The Effects of Blocking Ratio and Atmospheric Altitude on Starting Annular Jets

Author(s):  
Emad Abdel-Raouf ◽  
John Baker ◽  
Muhammad Sharif

The effects of the blocking ratio and atmospheric altitude on starting annular air jets at a low Reynolds number are investigated by examining the velocity profiles, jet entrainment and vortex formation. A 2D axisymmetric numerical model is developed to perform the analysis. The numerical model is validated with theoretical and experimental results from other studies. In order to achieve a comprehensive analysis, the annular jet is tested for blocking ratios with the values of 0.00 (i.e. a round jet), 0.50 and 0.75. Air properties at altitudes of 0.00 km, 18.90 km and 33.75 km are tested to simulate atmospheric environments at sea level, edge of near space and near space, respectively. The results showed that the starting jet velocity profile, entrainment and vortex formation is a strong function of blocking ratio. On the other hand, the same parameters are shown to be nearly independent, strong and weak functions of atmospheric altitude, respectively.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hitomi Nakamura ◽  
Moeka Yoshikawa ◽  
Naoko Oda-Ueda ◽  
Tadashi Ueda ◽  
Takatoshi Ohkuri

AbstractGenerally, intermolecular disulfide bond contribute to the conformational protein stability. To identify sites where intermolecular disulfide bond can be introduced into the Fab’s constant domain of the therapeutic IgG, Fab mutants were predicted using the MOE software, a molecular simulator, and expressed in Pichia pastoris. SDS-PAGE analysis of the prepared Fab mutants from P. pastoris indicated that among the nine analyzed Fab mutants, the F130C(H):Q124C(L), F174C(H):S176C(L), V177C(H):Q160C(L), F174C(H):S162C(L), F130C(H):S121C(L), and A145C(H):F116C(L) mutants mostly formed intermolecular disulfide bond. All these mutants showed increased thermal stability compared to that of Fab without intermolecular disulfide bond. In the other mutants, the intermolecular disulfide bond could not be completely formed, and the L132C(H):F118C(L) mutant showed only a slight decrease in binding activity and β-helix content, owing to the exertion of adverse intermolecular disulfide bond effects. Thus, our comprehensive analysis reveals that the introduction of intermolecular disulfide bond in the Fab’s constant domain is possible at various locations. These findings provide important insights for accomplishing human Fab stabilization.


2011 ◽  
Vol 25 (3) ◽  
pp. 511-536 ◽  
Author(s):  
Peter M. Johnson ◽  
Thomas J. Lopez ◽  
Juan Manuel Sanchez

SYNOPSIS We provide a comprehensive analysis of special items and the characteristics of the firms that recognize them. Our analysis reveals that the temporal frequency, magnitude, and persistence of special items has increased significantly in the last 30 years, and that such increases are primarily driven by negative special items. More recently, however, our evidence is consistent with both a decline in frequency and magnitude of negative special items. On the other hand, we find that the frequency of reporting of positive special items, which remained relatively constant through 2002, has increased in more recent years. We also find strong evidence that subsequent special item reporting is an increasing function of the frequency of “prior” special item reporting. Using a random subsample of firms reporting special items, we document that 22 percent of the amounts reported in Compustat do not reconcile with the amounts reported on the firms' actual financial statements. Our comprehensive analysis should be of interest to regulators, academics, and managers interested in the implications of special items on firm-related consequences such as future earnings and firm value. Our examination can also serve as a catalyst for researchers interested in extending this important area of inquiry.


2017 ◽  
Vol 27 (03) ◽  
pp. 1850037 ◽  
Author(s):  
Yasir ◽  
Ning Wu ◽  
Xiaoqiang Zhang

This paper proposes compact hardware implementations of 64-bit NESSIE proposed MISTY1 block cipher for area constrained and low power ASIC applications. The architectures comprise only one round MISTY1 block cipher algorithm having optimized FO/FI function by re-utilizing S9/S7 substitution functions. A focus is also made on efficient logic implementations of S9 and S7 substitution functions using common sub-expression elimination (CSE) and parallel AND/XOR gates hierarchy. The proposed architecture 1 generates extended key with independent FI function and is suitable for MISTY1 8-rounds implementation. On the other hand, the proposed architecture 2 uses a single FO/FI function for both MISTY1 round function as well as extended key generation and can be employed for MISTY1 [Formula: see text] rounds. To analyze the performance and covered area for ASICs, Synopsys Design Complier, SMIC 0.18[Formula: see text][Formula: see text]m @ 1.8[Formula: see text]V is used. The hardware constituted 3041 and 2331 NAND gates achieving throughput of 171 and 166 Mbps for 8 rounds implementation of architectures 1 and 2, respectively. Comprehensive analysis of proposed designs is covered in this paper.


2021 ◽  
Author(s):  
Kyriakos Avgouleas ◽  
Emmanouil Sarris ◽  
George Gougoulidis

The economical and operational implications of poor alignment are indisputable for the propulsion shafting system of a commercial vessel. This holds true for naval vessels as well, although far less documented in the technical literature. This paper addresses some of the challenges associated with the proper alignment of a high-speed naval craft, which has been in service for many years. Laser bore-sighting was performed on a Guided Missile Fast Patrol Boat resting on a docking cradle. The measured bearing offsets were input to a FEA model of the shafting system to calculate bearing reactions and detect potential misalignment issues. Subsequent decisions regarding corrective measures take into account the results computed by the numerical model, experience from sister ships, the available documentation from the building yard and several other factors which are discussed in the paper. The solutions proposed are targeted towards a balanced trade-off between cost effectiveness and out-of-service time on one hand, and the risk of potential damage from misalignment on the other hand, which would seriously disrupt the ship’s operational availability. Practical aspects and lessons identified in the process are also presented, which demonstrate the distinct differences in alignment strategy of a high-speed naval craft compared to a typical commercial vessel.


2009 ◽  
Vol 409 ◽  
pp. 154-160 ◽  
Author(s):  
Petr Frantík ◽  
Zbyněk Keršner ◽  
Václav Veselý ◽  
Ladislav Řoutil

The paper is focussed on numerical simulations of the fracture of a quasi-brittle specimen due to its impact onto a fixed rigid elastic plate. The failure of the specimen after the impact is modelled in two ways based on the physical discretization of continuum: via physical discrete elements and pseudo-particles. Advantages and drawbacks of both used methods are discussed. The size distribution of the fragments of the broken specimen resulting from physical discrete element model simulation follows a power law, which indicates the ability of the numerical model to identify the fractal nature of the fracture. The pseudo-particle model, on the other side, can successfully predict the kinematics of the fragments of the specimen under impact failure.


2012 ◽  
Vol 468-471 ◽  
pp. 2248-2254
Author(s):  
Qiang Li ◽  
Wan Kui Bu ◽  
Hui Xu ◽  
Xiao Bo Song

The numerical model of top coal drawing in gently inclined seam is built based on PFC2d software. By comparing with the theory of drawn-body movement law, it can be obtained that the shape of top coal drawn-body accords with the theory of random medium movement. The research results show that the form of the shape equation of top coal drawn-body is uniform while the top coal caving angle is different. On the other hand, with the difference of top coal caving angle and drawing height, the shape of top coal drawn-body is differential at the meso scale, which depends on the parameters of the shape equation of top coal drawn-body.


2017 ◽  
Vol 169 (2) ◽  
pp. 133-136
Author(s):  
Rafał KRAKOWSKI

In this paper the concept of filtration and the problem of microbial contamination occurring in the fuels and oils was presented. Then the factors influencing the growth of bacteria in petroleum products were described in detail. In the next part of the article modeling of the impact of fuel microbial contamination on filtration efficiency was performed. The modeling presented in the article is an example showing how undesirable phenomenon is the microbial contamination and how pollution affects the other elements of the entire system. As part of the modeling, numerical model of filtration with the solution was presented. Then analysis results on the basis of the impurities concentration characteristics in the fuel as a function of the fouling thickness in the partition of the filter is performed. The development of impurities was divided into three stages. In the article for one case the trend line was presented. The article was completed conclusions.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Luigi Bregant ◽  
Lucia Parussini ◽  
Valentino Pediroda

In order to perform the accurate tuning of a machine and improve its performance to the requested tasks, the knowledge of the reciprocal influence among the system's parameters is of paramount importance to achieve the sought result with minimum effort and time. Numerical simulations are an invaluable tool to carry out the system optimization, but modeling limitations restrict the capabilities of this approach. On the other side, real tests and measurements are lengthy, expensive, and not always feasible. This is the reason why a mixed approach is presented in this work. The combination, through recursive cokriging, of low-fidelity, yet extensive, numerical model results, together with a limited number of highly accurate experimental measurements, allows to understand the dynamics of the machine in an extended and accurate way. The results of a controllable experiment are presented and the advantages and drawbacks of the proposed approach are also discussed.


Author(s):  
Takehiko Segawa ◽  
Hiro Yoshida ◽  
Shinya Takekawa ◽  
Timothy Jukes ◽  
Kwing-So Choi

Properties of coaxial annular jets produced by a dielectric barrier discharge (DBD) plasma actuator with a doughnut shaped electrodes were investigated under atmospheric pressure and room temperature. The actuator consists of two circular electrodes sandwiching a thin dielectric layer. By applying 0 – ±3.3 kV between the electrodes at radio frequencies, the plasma jet is formed near the inner edge of the top electrode. The radial jet runs toward the center of the electrode and then impinges at the center to generate a wall normal annular jet. The evolution of the wall normal jet was observed precisely using particle image velocimetry (PIV) system. It was found that characteristic velocities increase in proportion to the bursting frequency and inversely proportional to the inner diameter of the electrode at the surging time of the voltage at 5.0 × 10−6sec.


Sign in / Sign up

Export Citation Format

Share Document