Computational Analysis of Cryogenic Flow Through a Control Valve

Author(s):  
Russell L. Daines ◽  
Jody L. Woods ◽  
Peter R. Sulyma

The initial efforts to develop the capability to model valves used in rocket engine component testing at Stennis Space Center are documented. An axisymmetric model of a control valve with LN2 as the working fluid was developed. The goal was to predict the effect of change in the plug/seat region of the valve prior to testing. The valve flow coefficient was predicted for a range of plug positions. Verification of the calculations was carried out to quantify the uncertainty in the numerical answer. The modeled results compared well qualitatively to experimental trends. Additionally, insights into the flow processes in the valve were obtained. Benefits from the verification process included the ability to use coarser grids and insight into ways to reduce computational time by using double precision accuracy and non-integer grid ratios. Future valve modeling activities will include shape optimization of the valve/seat region and dynamic grid modeling.

Author(s):  
Gagan Agrawal ◽  
S. Sunil Kumar ◽  
Deepak Kumar Agarwal

Cryogenic fluid entering a warm feedline absorbs heat and undergoes rapid flash evaporation leading to pressure surges, which can retard the flow inside the feedline. It may have serious repercussion in operation of the rocket engine during start up. Experimental and numerical studies are carried out to examine the effect of inlet pressure and initial feedline temperature on pressure surges. An analytical model using sinda/fluint software is developed to investigate this complex two-phase flow phenomenon including the various boiling regimes that exist during line chilling. The numerical study is carried out considering 1D flow through a cryogenic feedline of 2.47 m long and 0.01 m inner diameter with liquid nitrogen at 77.3 K as working fluid. Predictions are made for the inlet pressure in the range of 0.28–0.76 MPa and initial wall temperature of 200 K and 300 K. Subsequently, an experimental test rig is setup and the model is validated with the experimental data. The studies show that within the range of parameter considered, the magnitude of pressure surge increases exponentially with increase in inlet pressure and decreases with the prechilling of feedline.


Author(s):  
Nicolás García Rosa ◽  
Adrien Thacker ◽  
Guillaume Dufour

In a fan stage under windmilling conditions, the stator operates under negative incidence, leading to flow separation, which may present an unsteady behaviour due to rotor/stator interactions. An experimental study of the unsteady flow through the fan stage of a bypass turbofan in windmilling is proposed, using hot-wire anemometry. Windmilling conditions are reproduced in a ground engine test bed by blowing a variable mass flow through a bypass turbofan in ambient conditions. Time-averaged profiles of flow coefficient are independent of the mass flow, demonstrating the similarity of velocity triangle. Turbulence intensity profiles reveal that the high levels of turbulence production due to local shear are also independent of the inlet flow. A spectral analysis confirms that the flow is dominated by the blade passing frequency, and that the separated regions downstream of the stator amplify the fluctuations locked to the BPF without adding any new frequency. Phase-locked averaging is used to capture the periodic wakes of the rotor blades at the rotor/stator interface. A spanwise behaviour typical of flows through windmilling fans is evidenced. Through the inner sections of the fan, rotor wakes are thin and weakly turbulent, and the turbulence level remains constant through the stage. The rotor wakes thicken and become more turbulent towards the fan tip, where flow separation occurs. Downstream of the stator, maximum levels of turbulence intensity are measured in the separated flow. Large periodical zones of low velocity and high turbulence intensity are observed in the outer parts of the separated stator wake, confirming the pulsating motion of the stator flow separation, locked at the blade passing frequency. Space-time diagrams show that the flow is chorochronic, and a 2 D non-linear harmonic simulation is able to capture the main interaction modes, however, the stator incidence distribution could be affected by 3 D effects.


Author(s):  
Vaibhav K. Arghode ◽  
Pramod Kumar ◽  
Yogendra Joshi ◽  
Thomas S. Weiss ◽  
Gary Meyer

Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using Particle Image Velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8456
Author(s):  
Icaro Figueiredo Vilasboas ◽  
Victor Gabriel Sousa Fagundes dos Santos ◽  
Armando Sá Ribeiro Júnior ◽  
Julio Augusto Mendes da Silva

Global optimization of industrial plant configurations using organic Rankine cycles (ORC) to recover heat is becoming attractive nowadays. This kind of optimization requires structural and parametric decisions to be made; the number of variables is usually high, and some of them generate disruptive responses. Surrogate models can be developed to replace the main components of the complex models reducing the computational requirements. This paper aims to create, evaluate, and compare surrogates built to replace a complex thermodynamic-economic code used to indicate the specific cost (US$/kWe) and efficiency of optimized ORCs. The ORCs are optimized under different heat sources conditions in respect to their operational state, configuration, working fluid and thermal fluid, aiming at a minimal specific cost. The costs of 1449.05, 1045.24, and 638.80 US$/kWe and energy efficiencies of 11.1%, 10.9%, and 10.4% were found for 100, 1000, and 50,000 kWt of heat transfer rate at average temperature of 345 °C. The R-square varied from 0.96 to 0.99 while the number of results with error lower than 5% varied from 88% to 75% depending on the surrogate model (random forest or polynomial regression) and output (specific cost or efficiency). The computational time was reduced in more than 99.9% for all surrogates indicated.


The main aim of our project is to design and fabrication of pneumatic two step speed control of a cylinder. Initially the flow from the FRL retracts the cylinder when the push button is in its spring offset position. When it is pushed the flow pilots actuate. The air passes through the flow control and shuttle valve. Then the cylinder extends with high speed as the valve allows more air to enter the cylinder. When the piston reaches the position it operates the cam push button and pilot air flow through this and actuate 5/2 pilot operated valve and reaches flow control valve which permits less air. Then the flow through enters the shuttle valve to cylinder and allows the cylinder to extend at relatively low speed. At the end of extension stroke deactivating push button retracts the cylinder. Thus the speed of cylinder is controlled and project can be achieved


2020 ◽  
Vol 6 (2) ◽  
pp. 12-19
Author(s):  
Yuri I. Kondrashov ◽  
Elena N. Ermilova ◽  
Anna N. Vidyaskina

For units providing flow control for cryogenic fluids and operating under conditions of a significant change in the temperature range from positive to cryogenic and in a two-phase state of the working fluid, the problem of sealing the closure members of the units (valve pairs) becomes urgent.Joint sealing is ensured by creating contact pressure in the joint through deforming the roughness peaks obtained by surface treatment of the valve pair.The mechanical properties of the materials of the contacting valve pairs change significantly under the influence of cryogenic temperatures. First of all, the plastic properties are reduced, therefore, the creation of increased contact pressure is required.The article presents a methodology for evaluation of changes in the microgeometry of contacting surfaces depending on the specific contact pressure. It also allows one to evaluate the conductivity of microgaps in the viscous and molecular regimes of fluid flow through contacting surfaces.


Author(s):  
Daniel O. Baun ◽  
Ronald D. Flack

Lateral centrifugal impeller forces are calculated using the CFD model developed in Part I of this paper. The impeller forces are evaluated by integrating the pressure and momentum profiles at both the impeller inlet and exit planes. Direct impeller lateral force measurements were made using a magnetic bearing supported pump rotor. Comparisons between the simulated and measured forces are first made for both average and transient impeller forces with water as the working fluid. Air was then substituted as the working fluid in the validated CFD model and the effect of impeller Mach number and Reynolds number on the static impeller lateral forces was investigated. The non-dimensional lateral impeller force characteristics as a function of normalized flow coefficient are similar in character between the incompressible and compressible case. At the matching point flow coefficient the non-dimensional impeller force magnitude was the same for all compressible and incompressible simulations. For any normalized flow rate other than the matching point flow rate, the magnitude of the non-dimensional impeller force increased as the Mach number increased. As the choke condition was approached the magnitude of the impeller force increased exponentially. As the Mach number increased the transition of the force orientation vector from the low flow asymptote to the high flow asymptote occurred over a progressively smaller range of flows.


2021 ◽  
Vol 28 (2) ◽  
pp. 142-151
Author(s):  
Ruslan Shaidullin ◽  
Albert Bekerov ◽  
Andrey Sabirzyanov

Author(s):  
Alton Reich

Abstract Control valves are used to adjust fluid flow rates in an extremely wide variety of applications. This paper discusses a steam flow control valve that is required to operate with a fairly wide range of inlet conditions (steam pressure) and provide effective control over a fairly wide range of steam flow rates. In this particular case a valve design was developed using “classical” methods — a combination of experience and hand calculations. The valve was tested and it did not provide adequate control over the flow for the application. The valve redesign effort used CFD to gain insight into the flow through the valve in order to evaluate control performance before the valve was fabricated and assembled. Several internal geometries were assessed and compared in order to identify two configurations that would meet the flow control requirements. These configurations were fabricated and tested and deemed to be adequate.


Sign in / Sign up

Export Citation Format

Share Document