Centrifugal Pump Pressure Pulsation Prediction Accuracy Dependence Upon CFD Models and Boundary Conditions

Author(s):  
Sang Hyun Park ◽  
Gerald L. Morrison

Unsteady CFD simulations for a low specific speed open faced impeller centrifugal pump operating with and without balancing holes and having cut-away sections of the impeller are performed and compared to experimental data obtained using the actual pump simulated. For this simulation, the entire pump from suction inlet to exit flange is modeled. General pump performance characteristics are compared between the actual pump and the simulation. Pressure pulsation data are recorded at various locations in the pump using flush mounted pressure transducers and directly compared to the simulation results. Pressure spectrum data are used to evaluate the effects of three different boundary conditions upon the accuracy of the pressure pulsation simulations as well as the overall pump performance. These boundary conditions are a) fixed inlet and exit pressure, b) mass flow rate inlet condition with outflow exit, and c) target mass flow rate inlet with outflow exit which lets the inlet pressure fluctuate. All of these are available in the commercial CFD package utilized. Based upon comparisons between CFD simulations and experimental data for both the steady and unsteady conditions, the mass inlet condition is found to produce the best overall results for the installed pump.

2018 ◽  
Vol 8 (9) ◽  
pp. 1413 ◽  
Author(s):  
Dan Yao ◽  
Kwongi Lee ◽  
Minho Ha ◽  
Cheolung Cheong ◽  
Inhiug Lee

A new pump, called the hybrid airlift-jet pump, is developed by reinforcing the advantages and minimizing the demerits of airlift and jet pumps. First, a basic design of the hybrid airlift-jet pump is schematically presented. Subsequently, its performance characteristics are numerically investigated by varying the operating conditions of the airlift and jet parts in the hybrid pump. The compressible unsteady Reynolds-averaged Navier-Stokes equations, combined with the homogeneous mixture model for multiphase flow, are used as the governing equations for the two-phase flow in the hybrid pump. The pressure-based methods combined with the Pressure-Implicit with Splitting of Operators (PISO) algorithm are used as the computational fluid dynamics techniques. The validity of the present numerical methods is confirmed by comparing the predicted mass flow rate with the measured ones. In total, 18 simulation cases that are designed to represent the various operating conditions of the hybrid pump are investigated: eight of these cases belong to the operating conditions of only the jet part with different air and water inlet boundary conditions, and the remaining ten cases belong to the operating conditions of both the airlift and jet parts with different air and water inlet boundary conditions. The mass flow rate and the efficiency are compared for each case. For further investigation into the detailed flow characteristics, the pressure and velocity distributions of the mixture in a primary pipe are compared. Furthermore, a periodic fluctuation of the water flow in the mass flow rate is found and analyzed. Our results show that the performance of the jet or airlift pump can be enhanced by combining the operating principles of two pumps into the hybrid airlift-jet pump, newly proposed in the present study.


Author(s):  
M. K. Mittal ◽  
R. Kumar ◽  
A. Gupta

The objective of this study is to investigate the effect of coiling on the flow characteristics of R-407C in an adiabatic spiral capillary tube. The characteristic coiling parameter for a spiral capillary tube is the coil pitch; hence, the effect of the coil pitch on the mass flow rate of R-407C was studied on several capillary tube test sections. It was observed that the coiling of the capillary tube significantly reduced the mass flow rate of R-407C in the adiabatic spiral capillary tube. In order to quantify the effect of coiling, the experiments were also conducted for straight a capillary tube, and it was observed that the coiling of the capillary tube reduced the mass flow rate in the spiral tube in the range of 9–18% as compared with that in the straight capillary tube. A generalized nondimensional correlation for the prediction of the mass flow rates of various refrigerants was developed for the straight capillary tube on the basis of the experimental data of R-407C of the present study, and the data of R-134a, R-22, and R-410A measured by other researchers. Additionally, a refrigerant-specific correlation for the spiral capillary was also proposed on the basis of the experimental data of R-407C of the present study.


Author(s):  
Ying Zhang ◽  
Arun Kumar Narasimhan ◽  
Mengjie Bai ◽  
Li Zhao ◽  
Shuai Deng ◽  
...  

Abstract Solar driven ORC system is a possible solution for small-scale power generation. A scroll expander is considered due to its better suitability among other positive displacement expanders for small-scale power outputs. This work conducted a test of an ORC system with an expansion valve by varying the working fluid mass flow rate in two scenarios. A dynamic system-level model of ORC was developed and validated with experimental data. The validated model was used to predict the ORC performance considering off-design conditions of expander and solar insolation. The experimental data showed that pressures and temperatures exhibited the same trend as that of the working fluid mass flow rate, of which the evaporation pressure was the most sensitive to this variation. The simulation results are in good agreement with the experimental results. Results from the dynamic model showed that the ORC power output was underestimated by up to 54.7%, when off-design performance of expander was not considered. Considering the expander off-design performance and solar insolation, a highest thermal efficiency of 7.6% and an expander isentropic efficiency of 80.6% were achieved.


2019 ◽  
Vol 35 (5) ◽  
pp. 735-746
Author(s):  
D. Khoeini ◽  
E. Shirani

ABSTRACTEffects of geometric parameters of diffuser vanes as well as impeller micro grooves depth on the performance of a vertically suspended centrifugal pump have been studied. Different diffuser vanes height,leading angles, trailing angles, wrapping angles and furthermore, impeller micro grooves depths have been analyzed thoroughly. Numerical results have been verified by comparing experimental data. Results, without considering cavitation, reveal that diffuser vanes height has the profound impact on the vertically suspended centrifugal pump performance followed by vanes wrapping angle. Additionally, it is observed that delivered head and efficiency of micro-grooved impellers reduce more by flow rate enhancing rather than that of the original impeller.


1998 ◽  
Vol 4 (4) ◽  
pp. 257-269 ◽  
Author(s):  
B. P. Williams ◽  
R. D. Flack

A single control volume, Iwatsubo based bulk flow method for the calculation of these coefficients is developed and implemented. The method herein uses a unique iterative technique to first identify the mass flow rate based on pressure drops across the individual teeth, which is then used in the governing sets of continuity and momentum equations. The method is applicable to different teeth geometries and arrangements. A parametric analysis of the effect of mass flow rate on rotor dynamic coefficients is performed and suggests that a small variation in mass flow rate does not significantly detract from the accuracy of the predicted dynamic coefficients; the mass flow rate calculation implemented in this paper is sufficiently accurate. Furthermore, the inclusion of some tangential momentum parameters has been previously proposed to improve the accuracy of the Iwatsubo method. However, from the current analysis the inclusion of such parameters is also shown to have little effect on the rotor dynamic coefficients and does not lead to improved correlation with experimental data. Comparisons to experimental data suggest that the method herein is reasonable for use as a design tool to predict the trends and actual values of cross-coupled stiffness, the most important seal parameter in rotor dynamic analyses. The method is also shown to be useful in predicting the order of magnitude of principal stiffness and damping coefficients.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Ehsan Roohi ◽  
Masoud Darbandi ◽  
Vahid Mirjalili

We use a direct simulation Monte Carlo (DSMC) method to simulate gas heating/cooling and choked subsonic flows in micro/nanoscale channels subject to either constant wall temperature or constant/variable heat flux boundary conditions. We show the effects of applying various boundary conditions on the mass flow rate and the flow parameters. We also show that it is necessary to add a buffer zone at the end of the channel if we wish to simulate more realistic conditions at the channel outlet. We also discuss why applying equilibrium-based Maxwellian distribution on molecules coming from the channel outlet, where the flow is nonequilibrium, will not disturb the DSMC solution. The current velocity, pressure, and mass flow rate results are compared with different analytical solutions of the Navier–Stokes equations. Although there are good agreements between the DSMC results and the analytical solutions in low compressible flow, the analytical solutions yield incorrect velocity and mass flow rate values in short micro/nanochannel flows with high compressibility and/or choked flow conditions.


Author(s):  
Erfan Niazi ◽  
M. J. Mahjoob ◽  
Ardeshir Bangian

Cavitation in pumps is one of the most important causes of damage to pumps impellers/inducers. A numerical model is developed here to simulate the pump hydraulics in different conditions. Experiments are also conducted to validate the computer simulations. To verify the numerical model, the h–m˙ (head versus mass flow rate) of the model is compared with the experimental data. The system is then run under cavitation state. Two methods are applied to monitor the cavitation threshold: first by using stroboscope and observing cavitation bubbles through the transparent casing of the pump and second by checking the NPSHA value for cavitation based on ISO3555. The paper then compares the experimental and numerical results to find the strengths and weaknesses of the numerical model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-Fang Hsieh ◽  
Chih-Kuo Lee ◽  
Weichung Wang ◽  
Yu-Cheng Huang ◽  
Wen-Jeng Lee ◽  
...  

AbstractThis study aims to apply a CCTA-derived territory-based patient-specific estimation of boundary conditions for coronary artery fractional flow reserve (FFR) and wall shear stress (WSS) simulation. The non-invasive simulation can help diagnose the significance of coronary stenosis and the likelihood of myocardial ischemia. FFR is often regarded as the gold standard to evaluate the functional significance of stenosis in coronary arteries. In another aspect, proximal wall shear stress ($$\mathrm{{WSS}_{prox}}$$ WSS prox ) can also be an indicator of plaque vulnerability. During the simulation process, the mass flow rate of the blood in coronary arteries is one of the most important boundary conditions. This study utilized the myocardium territory to estimate and allocate the mass flow rate. 20 patients are included in this study. From the knowledge of anatomical information of coronary arteries and the myocardium, the territory-based FFR and the $$\mathrm{{WSS}_{prox}}$$ WSS prox can both be derived from fluid dynamics simulations. Applying the threshold of distinguishing between significant and non-significant stenosis, the territory-based method can reach the accuracy, sensitivity, and specificity of 0.88, 0.90, and 0.80, respectively. For significantly stenotic cases ($$\mathrm{FFR}_{m}$$ FFR m $$\le$$ ≤ 0.80), the vessels usually have higher wall shear stress in the proximal region of the lesion.


2021 ◽  
Vol 13 (6) ◽  
pp. 3464
Author(s):  
Hélio A. G. Diniz ◽  
Tiago F. Paulino ◽  
Juan J. G. Pabon ◽  
Antônio A. T. Maia ◽  
Raphael N. Oliveira

This paper presents a distributed mathematical model for a carbon dioxide direct expansion solar-assisted heat pump used to heat bath water. The main components are a gas cooler, a needle valve, an evaporator/collector, and a compressor. To develop the heat exchange models, mass, energy, and momentum balances were used. The model was validated for transient as well as steady state conditions using experimental data. A reasonably good agreement was observed between the predicted temperatures and experimental data. The simulations showed that the time step required to demonstrate the behavior of the heat pump in the transient regime is greater than the time step required for the steady state. The results obtained with the mathematical model revealed that a reduction in the water mass flow rate results in an increase in the water outlet temperature. In addition, when the carbon dioxide mass flow rate is reduced, the compressor inlet and outlet temperatures increase as well as the water outlet temperature.


Sign in / Sign up

Export Citation Format

Share Document