Performance and Internal Flow of Contra-Rotating Small Hydro Turbine

Author(s):  
Toru Shigemitsu ◽  
Junichiro Fukutomi ◽  
Ryosuke Sonohata

Small hydropower generation is one of important alternative energy, and potential of small hydropower is great. Efficiency of small hydro turbines is lower than that of large one, and these small hydro turbine’s common problems are out of operation by foreign materials. Then, there are demands for small hydro turbines to keep high performance and wide flow passage. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance and enable to use low-solidity rotors with wide flow passage, in order to accomplish high performance and stable operation. Final goal of this study is development of a small hydro turbine like electrical goods, which has high portability and makes an effective use of unused small hydro power energy source. In this research, experimental apparatus of the contra-rotating small hydro turbine with 60mm casing diameter was manufactured and performance of it was investigated by an experiment. Efficiency of the contra-rotating small hydro turbine was high in pico-hydro turbine and high efficiency could be kept in wide flow rate range. Internal flow condition, which was difficult to measure experimentally, was shown by the numerical flow analysis. Further, influence of spokes to support the rotor was clarified. Then, a relation between the performance and internal flow condition was considered by the experimental and numerical analysis results.

Author(s):  
Toru Shigemitsu ◽  
Yasutoshi Takeshima ◽  
Chihiro Tanaka ◽  
Junichiro Fukutomi

Small hydropower generation is one of important alternative energy, and potential of small hydropower is great. Efficiency of small hydroturbines is lower than that of large one, and these small hydroturbine’s common problems are out of operation by foreign materials. Then, there are demands for small hydroturbines to keep high performance and wide flow passage. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance and enable to use low-solidity rotors with wide flow passage, in order to accomplish high performance and stable operation. Final goal of this study is development of a small hydroturbine like electrical goods, which has high portability and makes an effective use of unused small hydro power energy source. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range. On the other hand, the relatively large loss occurred at the spokes which should be installed for this small hydroturbine to support the rotors. Then, the new spoke to increase its performance is proposed in this research. Internal flow condition, which was difficult to measure experimentally, was shown by the numerical flow analysis. Further, the influence of spoke geometry was clarified. Then, a relation between the performance and internal flow condition was considered by the numerical analysis results. In the present paper, the performance of the contra-rotating small hydroturbine using different spoke geometry is shown by the numerical results. Further, internal flow condition between the front and rear rotors are investigated.


2015 ◽  
Vol 18 (5) ◽  
pp. 19-25
Author(s):  
Zhenmu Chen ◽  
Qingsheng Wei ◽  
Patrick Mark Singh ◽  
Young-Do Choi

Author(s):  
Ridho Irwansyah ◽  
Warjito ◽  
Budiarso ◽  
Christopher Clement Rusli ◽  
Sanjaya BS Nasution

To overcome the lack of rural electricity in Indonesia vortex pico-hydro turbines are used as an option solution. This is due to the ability of the vortex turbine to work in low head conditions effectively. This study is conducted with comparison of curved and straight blade to obtain a more optimum turbine performance. Two methods are carried out in this study, analytical and computational method. Analytical methods are used to determine blade geometry and its performance while computational methods are used to analyse internal flow of turbine. As a result, the study concludes that hydraulic efficiency of vortex turbine in this study doesn’t affect much between straight and curved blades. The hydraulic efficiency for those blades is around 0.63. In addition, the study continued by analysing the optimum location of the blade in the basin. The results of the study show that the optimum ratio of depth and diameter of the blade is 0.33 with turbine efficiency is 0.84. Thus, the location of the blades is more important than the type of blades.


Author(s):  
Toru Shigemitsu ◽  
Hirotaka Shinohara ◽  
Takumi Matsubara ◽  
Junichiro Fukutomi

Fluid machineries for fluid food have been used in wide variety of field i.e. transportation, filling, and improvement of quality of fluid food. Although, flow conditions of these are quite complicated because fluid food is different from water. Therefore, a design method based on the internal flow conditions is not conducted. In this research, turbo-pump having small number of blade was used to decrease shear loss and keep wide flow passage. The flow phenomena were not clarified in detail, although, it was found that internal flow condition was complex in the test pump in previous studies. In order to investigate the complex internal flow condition, the unsteady numerical analysis using low viscous fluid was conducted. In this paper, the internal flow conditions at each axial position of the centrifugal pump having semi-open impeller were investigated by the numerical analysis results. In addition to that, the influence of the internal flow conditions on its head was clarified.


Author(s):  
Toru Shigemitsu ◽  
Junichiro Fukutomi ◽  
Kensuke Kaji

Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields; automobile radiator pump, ventricular assist pump, cooling pump for electric devices and so on. Further, the needs for mini centrifugal pumps would become larger with the increase of the application of it for electrical machines. It is desirable that the mini centrifugal pump design be as simple as possible as precise manufacturing is required. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, we started research on the mini centrifugal pump for the purpose of development of high performance mini centrifugal pumps with simple structure. Three types of rotors with different outlet angles are prepared for an experiment The performance tests are conducted with these rotors in order to investigate the effect of the outlet angle on performance and internal flow condition of mini centrifugal pumps. In addition to that, the blade thickness is changed because blockage effect in the mini centrifugal pump becomes relatively larger than that of conventional pumps. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-Fluent) to investigate the internal flow condition. It is clarified from the experimental results that head of the mini centrifugal pump increases according to the increase of the blade outlet angle and the decrease of the blade thickness. In the present paper, the performance of the mini centrifugal pump is shown and the internal flow condition is clarified with the results of the experiment and the numerical flow analysis. Furthermore, the effects of the blade outlet angle and the blade thickness on the performance are investigated and the internal flow of each type of rotor is clarified by the numerical analysis results.


Author(s):  
Takaya Onishi ◽  
H. Sato ◽  
M. Hayakawa ◽  
Y. Kawata

Propeller fans are required not only to have high performance but also to be extremely quiet. The internal flow field of ventilation propeller fans is even more complicated because they usually have a very peculiar configuration with protruding blades upstream. Thus, many kinds of internal vortices yield which cause noise and their cause and countermeasures are needed to be clarified. The purposes of this paper are to visualize the internal flow of the propeller fan from the static and rotating frame of reference. The internal flow visualization measured from the static frame gives approximately the scale of the tip vortex. The visualization from the rotating coordinate system yields a better understanding of the flow phenomena occurring at the specific blade. The experiment is implemented by using a small camera mounted on the shaft of the fan and rotated it to capture the behavior of the vortices using a laser light sheet to irradiate the blade surface. Hence, the flow field of the specific blade could be understood to some extent. The visualized results are compared with the CFD results and these results show a similar tendency about the generation point and developing process of the tip vortex. In addition, it is found that the noise measurement result is relevant to the effect of tip vortex from the visualization result.


2013 ◽  
Vol 712-715 ◽  
pp. 1263-1267
Author(s):  
Shan Tu ◽  
Shu Ming Wu ◽  
Qi Zhou ◽  
Hong Mei Zhang ◽  
Xiao Qing Zhu

The main inlet component of steam turbine is control valve. The stable operation of the steam turbine control valve is vital for safe and stable operation of the steam turbine and safety production of the power plant. However, due to the complexity of the structure and unsteady characteristics of steam flow in the valve, there is not enough experimental method about the detailed flow characteristics of the area near control valve disc and the inside of the valve chamber up to now. This article is to focus on the simulation of the steam turbine control valve interior flow field which includes the valve pre-inlet channel in different conditions, then find the reasons which caused instability and pressure loss of the control valve by analyzing the flow field details, finally further optimization design. The profile matching of the valve disc and valve seat has a great influence on the interior flow field of control valve, so analysis of the high performance valve disc shape and divergence angle of valve seat is carried out, and the research conclusion is used for guide design and development of the control valve.


2012 ◽  
Vol 621 ◽  
pp. 196-199
Author(s):  
Shui Ping LI ◽  
Ya Li Yuan ◽  
Lu Gang Shi

Numerical simulation method of the internal flow field of fluid machinery has become an important technology in the study of fluid machinery design. In order to obtain a high-performance cement slurry mixer, computational fluid dynamics (CFD) techniques are used to simulate the flow field in the mixer, and the simulation results are studied. According to the analysis results, the structural parameters of the mixer are modified. The results show the mixer under the revised parameters meet the design requirements well. So CFD analysis method can shorten design period and provide valuable theoretical guidance for the design of fluid machinery.


2015 ◽  
Vol 3 (30) ◽  
pp. 15432-15443 ◽  
Author(s):  
Liya Zhang ◽  
Li Zhang ◽  
Juan Zhang ◽  
Weiwei Hao ◽  
Honghe Zheng

High-purity Si micro-plates are recovered from photovoltaic industry waste and used as high-performance Li-ion battery anodes by adopting robust polymeric coatings.


Sign in / Sign up

Export Citation Format

Share Document