Modeling Separation and Cavitation Behind a Blunt Body

Author(s):  
Jingsen Ma ◽  
Chao-Tsung Hsiao ◽  
Xiongjun Wu ◽  
Georges L. Chahine

Cavitation flow behind a blunt body is modeled using a physics-based numerical model of cavitation initiation and transition to larger cavities. The calculations initiate from the dynamics of nuclei, then tracks the dispersed bubble phase with a two-phase viscous model. This solver includes a level set method to model coalescence of the nuclei into large cavities and to track the dynamics of the resulting free surfaces. A transition scheme enables collection of the bubbles into a large cavity and also enables breakup of a large cavity into a bubble cloud. Using this model, simulations are conducted for different flow velocities and corresponding cavitation regimes. When the velocity is relatively small (i.e., large cavitation number), flow separation behind the body results in the shedding of vortices, which capture nuclei in their cores to form elongated vortical cavities. As the flow velocity increases (or as the ambient pressure decreases) the flow evolves into a separated flow with a large cavity behind the body. A reentrant jet may form and move upstream into the cavity towards the body. This jet periodically shears off portions of the cavity volume, resulting in large amounts of bubble clouds. These results are in good qualitative agreements with experimental observations.

Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 510
Author(s):  
Yan Huang ◽  
Bifen Shu ◽  
Shengnan Zhou ◽  
Qi Shi

In this paper, two-phase pressure drop data were obtained for boiling in horizontal rectangular microchannels with a hydraulic diameter of 0.55 mm for R-134a over mass velocities from 790 to 1122, heat fluxes from 0 to 31.08 kW/m2 and vapor qualities from 0 to 0.25. The experimental results show that the Chisholm parameter in the separated flow model relies heavily on the vapor quality, especially in the low vapor quality region (from 0 to 0.1), where the two-phase flow pattern is mainly bubbly and slug flow. Then, the measured pressure drop data are compared with those from six separated flow models. Based on the comparison result, the superficial gas flux is introduced in this paper to consider the comprehensive influence of mass velocity and vapor quality on two-phase flow pressure drop, and a new equation for the Chisholm parameter in the separated flow model is proposed as a function of the superficial gas flux . The mean absolute error (MAE ) of the new flow correlation is 16.82%, which is significantly lower than the other correlations. Moreover, the applicability of the new expression has been verified by the experimental data in other literatures.


2007 ◽  
Vol 589 ◽  
pp. 353-374 ◽  
Author(s):  
P. A. GREGORY ◽  
P. N. JOUBERT ◽  
M. S. CHONG

Using the method pioneered by Gurzhienko (1934), the crossflow separation produced by a body of revolution in a steady turn is examined using a stationary deformed body placed in a wind tunnel. The body of revolution was deformed about a radius equal to three times the body's length. Surface pressure and skin-friction measurements revealed regions of separated flow occurring over the rear of the model. Extensive surface flow visualization showed the presence of separated flow bounded by a separation and reattachment line. This region of separated flow began just beyond the midpoint of the length of the body, which was consistent with the skin-friction data. Extensive turbulence measurements were performed at four cross-sections through the wake including two stations located beyond the length of the model. These measurements revealed the location of the off-body vortex, the levels of turbulent kinetic energy within the shear layer producing the off-body vorticity and the large values of 〈uw〉 stress within the wake. Velocity spectra measurements taken at several points in the wake show evidence of the inertial sublayer. Finally, surface flow topologies and outer-flow topologies are suggested based on the results of the surface flow visualization.


1982 ◽  
Vol 104 (4) ◽  
pp. 750-757 ◽  
Author(s):  
C. T. Avedisian

A study of high-pressure bubble growth within liquid droplets heated to their limits of superheat is reported. Droplets of an organic liquid (n-octane) were heated in an immiscible nonvolatile field liquid (glycerine) until they began to boil. High-speed cine photography was used for recording the qualitative aspects of boiling intensity and for obtaining some basic bubble growth data which have not been previously reported. The intensity of droplet boiling was found to be strongly dependent on ambient pressure. At atmospheric pressure the droplets boiled in a comparatively violent manner. At higher pressures photographic evidence revealed a two-phase droplet configuration consisting of an expanding vapor bubble beneath which was suspended a pool of the vaporizing liquid. A qualitative theory for growth of the two-phase droplet was based on assuming that heat for vaporizing the volatile liquid was transferred across a thin thermal boundary layer surrounding the vapor bubble. Measured droplet radii were found to be in relatively good agreement with predicted radii.


Author(s):  
Monica Sanda Iliescu ◽  
Gabriel Dan Ciocan ◽  
Franc¸ois Avellan

Part load operation of hydro turbines with fixed pitch blades causes complex instable cavitation flow in the diffuser cone. Application of PIV systems provides the opportunity to investigate the flow velocity and turbulent fields in the case of development of cavitation vortex, the so-called turbine rope, at the outlet of a Francis turbine runner. The synchronization of the PIV flow survey with the rope precession allows to apply phase averaging techniques in order to extract both the periodic velocity components and the rope layout. The influence of the turbine setting level on the volume of the cavity rope and its center is investigated, providing a physical insight on the hydrodynamic complex phenomena involved in the development of the cavitation rope at Francis turbine operating regimes.


2017 ◽  
Vol 14 (06) ◽  
pp. 1750063 ◽  
Author(s):  
A. M. Hegab ◽  
S. A. Gutub ◽  
A. Balabel

This paper presents the development of an accurate and robust numerical modeling of instability of an interface separating two-phase system, such as liquid–gas and/or solid–gas systems. The instability of the interface can be refereed to the buoyancy and capillary effects in liquid–gas system. The governing unsteady Navier–Stokes along with the stress balance and kinematic conditions at the interface are solved separately in each fluid using the finite-volume approach for the liquid–gas system and the Hamilton–Jacobi equation for the solid–gas phase. The developed numerical model represents the surface and the body forces as boundary value conditions on the interface. The adapted approaches enable accurate modeling of fluid flows driven by either body or surface forces. The moving interface is tracked and captured using the level set function that initially defined for both fluids in the computational domain. To asses the developed numerical model and its versatility, a selection of different unsteady test cases including oscillation of a capillary wave, sloshing in a rectangular tank, the broken-dam problem involving different density fluids, simulation of air/water flow, and finally the moving interface between the solid and gas phases of solid rocket propellant combustion were examined. The latter case model allowed for the complete coupling between the gas-phase physics, the condensed-phase physics, and the unsteady nonuniform regression of either liquid or the propellant solid surfaces. The propagation of the unsteady nonplanar regression surface is described, using the Essentially-Non-Oscillatory (ENO) scheme with the aid of the level set strategy. The computational results demonstrate a remarkable capability of the developed numerical model to predict the dynamical characteristics of the liquid–gas and solid–gas flows, which is of great importance in many civilian and military industrial and engineering applications.


2013 ◽  
Vol 203-204 ◽  
pp. 111-114
Author(s):  
Adam Bunsch ◽  
Wiktoria Ratuszek ◽  
Małgorzata Witkowska ◽  
Joanna Kowalska ◽  
Aneta Łukaszek-Sołek

This paper presents the results of the texture investigation in the hexagonal phase and the body-centered cubic  phase of the Ti6Al4V alloy hot-deformed by forging. Forging was performed at two different temperatures on the occurrence of the single  and in the two-phase  +  state. It was found that after deformation both  and  phases are textured and their textures strongly depends on deformation temperature.


1970 ◽  
Vol 67 (3) ◽  
pp. 671-676
Author(s):  
E. R. D'sa

In (1) the velocity and magnetic fields were studied in the stagnation point region of a magnetized blunt body rotating with angular speed Ω. Some familiarity with this paper is assumed here: briefly, the nose section of the body was approximated by a disc of thickness t and conductivity σ′ and a perturbation solution was derived for small values of the diffusivity ratio ε (= ν/λ) and of the magnetic force coefficient N = σB2/4ρa. B is the uniform normal field component at the upperside (z = 0) of the disc, a is the strength of the external flow, p and σ are the density and conductivity of the fluid. The other two governing parameters are ω = Ω/a and β = σ′/σL, where L = (λ/a)½.


1960 ◽  
Vol 27 (2) ◽  
pp. 223-229 ◽  
Author(s):  
M. V. Morkovin

For the purposes of assessing the magnitude of flow disturbances which would affect conditions on a blunt nose of a body moving at supersonic speeds, the detached shock is approximated by a purely normal shock. The disturbances downstream of the shock are expressed in terms of the “free-stream” disturbances by considering sinusoidal fluctuations. Pressure fluctuations generated by interactions of entropy-temperature disturbances with the normal shock may be considerable at high Mach numbers, but their effect on the transition of a laminar boundary layer to a turbulent one is a matter of speculation. However, conjectures that reflections of such pressure waves between the body and the shock wave might lead to high resonant amplifications are definitely disproved.


1959 ◽  
Vol 3 (01) ◽  
pp. 10-21 ◽  
Author(s):  
Charles J. Henry ◽  
John Dugundji ◽  
Holt Ashley

The large increases anticipated in speeds of vehicles towed or propelled underwater suggests a re-examination of the problem of stability of flexible lifting surfaces mounted thereon. Experimental and theoretical evidence is assembled which suggests that oscillatory aeroelastic instability (flutter) is very unlikely at the structural-to-fluid mass ratios typical of hydrodynamic operation. It is shown that static instability (divergence) is the more important practical problem but that its occurrence can be predicted with greater confidence. Flutter data obtained in high-density fluids are reviewed, and various sources of inaccuracy in their theoretical prediction are analyzed. The need is expressed for more precise means of analytically representing both dynamic-elastic systems and three-dimensional unsteady hydrodynamic loads. For a simple hydrofoil with single degrees of freedom in bending and torsion, the theoretical influence of several significant parameters on high-density flutter is calculated and discussed. Recommendations are made for refinements to existing techniques of analysis to include the presence of channel boundaries, free surfaces, cavitation or separated flow.


2020 ◽  
Vol 21 (3) ◽  
pp. 309
Author(s):  
Maryam Fallah Abbasi ◽  
Hossein Shokouhmand ◽  
Morteza Khayat

Electronic industries have always been trying to improve the efficiency of electronic devices with small dimensions through thermal management of this equipment, thus increasing the use of small thermal sinks. In this study micro heat pipes with triangular and square cross sections have been manufactured and tested. One of the main objectives is to obtain an understanding of micro heat pipes and their role in energy transmission with electrical double layer (EDL). Micro heat pipes are highly efficient heat transfer devices, which use the continuous evaporation/condensation of a suitable working fluid for two-phase heat transport in a closed system. Since the latent heat of vaporization is very large, heat pipes transport heat at small temperature difference, with high rates. Because of variety of advantage features these devices have found a number of applications both in space and terrestrial technologies. The theory of operation micro heat pipes with EDL is described and the micro heat pipe has been studied. The temperature distribution have achieved through five thermocouples installed on the body. Water and different solution mixture of water and ethanol have used to investigate effect of the electric double layer heat transfer. It was noticed that the electric double layer of ionized fluid has caused reduction of heat transfer.


Sign in / Sign up

Export Citation Format

Share Document