Particles Transport in Railway Braking Systems: An Experimental and Numerical Investigation

Author(s):  
Charlene Octau ◽  
Marc Lippert ◽  
Anthony Graziani ◽  
Michel Watremez ◽  
Laurent Keirsbulck ◽  
...  

There has been a growing public health issue concerning the regulation of indoor air quality (IAQ) and the human exposure to particulate matter (PM). Today, this exposure is a major worldwide concern because ambient PM concentrations in many cities exceeded the limits set by the European air quality directive. Underground airborne particles are mainly generated by the mechanical abrasion of rail tracks, wheels and brake pads produced by urban railways transportation. For that reason, understanding the transport mechanism of particles with various size distribution is essential and crucial for understanding and accurately predicting the behavior of the main high particle concentration areas. In this framework, a simple case of particles emission inside a viscous flow in a channel has been investigated both experimentally and numerically. The suspended particles used experimentally are molybdenum solid particles with a broad size distribution (in diameter) from 1 to 80 μm (size similar to cases such as in braking systems). The experimental tests are conducted for a flow in a channel at a horizontal steady inflow velocity of uf = 0.15m/s. The solid particles are injected transversely to the horizontal bottom wall with an injection steady velocity of ui = 0.95m/s. Measurements and analysis are carried out using shadowscopy technique to determine the particles concentration fields. Finally, experimental results are compared to numerical ones predicted by a continuum computational fluid dynamics (CFD) approach using the SBM (Suspension Balance Model) implemented in “OPENFOAM” (via the Finite Volume Method).

2015 ◽  
Vol 19 (1) ◽  
pp. 317-328 ◽  
Author(s):  
Giuseppe Canneto ◽  
Cesare Freda ◽  
Giacobbe Braccio

The gas-particles flow in an interconnected bubbling fluidized cold model is simulated using a commercial CFD package by Ansys. Conservation equations of mass and momentum are solved using the Eulerian granular multiphase model. Bubbles formation and their paths are analyzed to investigate the behaviour of the bed at different gas velocities. Experimental tests, carried out by the cold model, are compared with simulation runs to study the fluidization quality and to estimate the circulation of solid particles in the bed.


2014 ◽  
Vol 955-959 ◽  
pp. 2425-2429 ◽  
Author(s):  
Yun Fei Li ◽  
Jian Guo Yang ◽  
Yan Yan Wang ◽  
Xiao Guo Wang

The purpose of this study is to construct a turbulent aggregation device which has specific performance for fine particle aggregation in flue gas. The device consists of two cylindrical pipes and an array of vanes. The pipes extending fully and normal to the gas stream induce large scale turbulence in the form of vortices, while the vanes downstream a certain distance from the pipes induce small one. The process of turbulent aggregation was numerically simulated by coupling the Eulerian multiphase model and population balance model together with a proposed aggregation kernel function taking the size and inertia of particles into account, and based on data of particles’ size distribution measured from the flue of one power plant. The results show that the large scale turbulence generated by pipes favours the aggregation of smaller particles (smaller than 1μm) notably, while the small scale turbulence benefits the aggregation of bigger particles (larger than 1μm) notably and enhances the uniformity of particle size distribution among different particle groups.


2011 ◽  
Vol 491 ◽  
pp. 145-150 ◽  
Author(s):  
Marcelo Martins ◽  
Sérgio Tonini Button ◽  
José Divo Bressan

Hot extrusion is a metal forming process with a huge importance in the manufacturing of long metallic bars with complex shapes, and because of this, academics and industries are especially interested in better understanding how metal flows during the process. In order to have a reliable computational tool that can help to solve and to obtain material internal flow, experimental tests and numerical simulation with the finite element method were carried out to obtain results of the velocity fields generated in hot direct extrusion of aluminum billets (aluminum alloy 6351). The experimental results of the velocity field will be used to validate a computational code based on the finite volume method.


2010 ◽  
Vol 132 (12) ◽  
Author(s):  
Y. Liu ◽  
W. Z. Li

The liquid droplet size distribution in gas-liquid vertical upward annular flow is investigated through a CFD (computational fluid dynamics)-PBM (population balance model) coupled model in this paper. Two-fluid Eulerian scheme is employed as the framework of this model and a population balance equation is used to obtain the dispersed liquid droplet diameter distribution, where three different coalescence and breakup kernels are investigated. The Sauter mean diameter d32 is used as a bridge between a two-fluid model and a PBM. The simulation results suggest that the original Luo–Luo kernel and the mixed kernel A (Luo’s coalescence kernel incorporated with Prince and Blanch’s breakup kernel) can only give reasonable predictions for large diameter droplets. Mixed kernel B (Saffman and Turner’s coalescence kernel incorporated with Lehr’s breakup kernel) can accurately capture the particle size distribution (PSD) of liquid droplets covering all droplet sizes, and is appropriate for the description of liquid droplet size distribution in gas-liquid annular flow.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Jiaming Lei ◽  
Jianmin Zhang ◽  
Lifang Zhang

The aerator can reduce erosion by mixing a large amount of air into the water in the solid wall area. The effectiveness of erosion reduction is mainly based on air concentration and its bubble size distribution. However, simultaneous simulation of the air concentration and its bubble size distribution in numerical simulations is still a hot and difficult area of research. Aiming at the downstream aerated flow of hydraulic aeration facilities, several numerical models, such as VOF, mixture, Euler, and Population Balance Model (PBM), are compared and verified by experiments. The results show that the CFD-PBM coupled model performs well compared to other conventional multiphase models. It can not only obtain the evolution law of the bubble distribution downstream of the aerator but also accurately simulate the recombination and evolution process of bubble aggregation and breakage. The Sauter mean diameter of the air bubbles in the aerated flow decreases along the way and eventually reaches a stable value. The bubble breakage is the main process in the development of the bubbles. It reveals the aeration law that the small air bubbles are closer to the bottom plate, while the large bubbles float up along the aerated flow, which provides a powerful support for the basic research on the mechanism of aeration and erosion reduction.


Author(s):  
ONKAR L. MAHAJAN ◽  
ABHAY A. UTPAT

In deep groove ball bearings contamination of lubricant grease by solid particles is one of the main reason for early bearing failure. To deal with such problem, it is fundamental not only the use of reliable techniques concerning detection of solid contamination but also the investigation of the effects of certain contaminant characteristics on bearing performance. Nowadays the techniques such as vibration measurements are being increasingly used for on-time monitoring of machinery performance. The present work investigates the effect of lubricant contamination by solid particles on the dynamic behavior of rolling bearings, in order to determine the trends in the amounts of vibration affected by contamination in the Grease and by the bearing wear itself. Experimental tests are performed with Deep-groove ball bearings. The Dolomite powder in three concentration levels and different particle sizes was used to contaminate the grease. Vibration signals were analyzed in terms of Root Mean Square (RMS) values and also in terms of defect frequencies.


2019 ◽  
Vol 5 (3) ◽  
pp. 205630511986765
Author(s):  
Supraja Gurajala ◽  
Suresh Dhaniyala ◽  
Jeanna N. Matthews

Poor air quality is recognized as a major risk factor for human health globally. Critical to addressing this important public-health issue is the effective dissemination of air quality data, information about adverse health effects, and the necessary mitigation measures. However, recent studies have shown that even when public get data on air quality and understand its importance, people do not necessarily take actions to protect their health or exhibit pro-environmental behaviors to address the problem. Most existing studies on public attitude and response to air quality are based on offline studies, with a limited number of survey participants and over a limited number of geographical locations. For a larger survey size and a wider set of locations, we collected Twitter data for a period of nearly 2 years and analyzed these data for three major cities: Paris, London, and New Delhi. We identify the three hashtags in each city that best correlate the frequency of tweets with local air quality. Using tweets with these hashtags, we determined that people’s response to air quality across all three cities was nearly identical when considering relative changes in air pollution. Using machine-learning algorithms, we determined that health concerns dominated public response when air quality degraded, with the strongest increase in concern being in New Delhi, where pollution levels are the highest among the three cities studied. The public call for political solutions when air quality worsens is consistent with similar findings with offline surveys in other cities. We also conducted an unsupervised learning analysis to extract topics from tweets in Delhi and studied their evolution over time and with changing air quality. Our analysis helped extract relevant words or features associated with different air quality–related topics such as air pollution policy and health. Also, the topic modeling analysis revealed niche topics associated with sporadic air quality events, such as fireworks during festivals and the air quality impact on an outdoor sport event. Our approach shows that a tweet-based analysis can enable social scientists to probe and survey public response to events such as air quality in a timely fashion and help policy makers respond appropriately.


1990 ◽  
Vol 215 ◽  
Author(s):  
Josef Jäckle

AbstractIt is shown that diffusion in the hard-square and hard-octahedron lattice gases at high particle concentration has cooperative properties resembling molecular relaxation in undercooled liquids near the glass transition. For these models a characteristic length of cooperativity is introduced by an underlying percolation problem, which determines whether permanently blocked particles exist in lattices of finite size. The percolation problem belongs to a general class of bootstrap percolation models. Salient Monte Carlo results for the concentration and size dependence of self diffusion in the hard-square lattice gas are presented. Similarities with the n-spin facilitated kinetic Ising models are also pointed out.


Sign in / Sign up

Export Citation Format

Share Document