Fuel Variability Effects on Turbulent, Lean Premixed Flames at High Pressures

Author(s):  
E. Boschek ◽  
P. Griebel ◽  
P. Jansohn

Fuel flexibility will be a key issue for the operation of future stationary gas turbines because of the increasing amount of off-spec natural gas qualities from new resources and upcoming new fuels derived from biomass which will be more important in the near future. The performance of gas turbines in terms of flame stability and low emission combustion must be at least maintained also with these new fuels. Therefore, the impact of fuel variation on combustion characteristics must be known for the combustor design. This paper addresses the effect of hydrogen and propane addition on flame characteristics like lean blowout (LBO), emissions (NOx, CO), flame positions and turbulent flame speeds for flames at gas turbine relevant conditions. Hydrogen enriched fuels are typical constituents of gasification fuels such as those obtained from biomass, while propane is considered a typical higher hydrocarbon present in off-spec natural gas. Turbulent, lean premixed flames of different fuels (methane, methane/hydrogen and methane/propane) have been studied in a generic, axis-symmetric, high-pressure gas turbine combustor. Flame stabilization is achieved aerodynamically via a recirculation zone induced by the combustor geometry with sudden expansion. Turbulence at the combustor inlet is generated using a turbulence grid (perforated plate). LBO limits are detected using the global OH chemiluminescence flame signal collected with a photo-multiplier and a data acquisition system together with the exhaust gas temperature measured with a thermocouple. The species concentrations (CO2, O2, CO, NOx) are measured by exhaust gas analyzers. Flame front positions and turbulent flame speeds are determined with Laser Induced Fluorescence measurements of the OH radical (OH-PLIF). Flame characteristics will be presented for the following fuel/air mixtures at a mixture preheating temperature of 673 K: pure methane, H2-enriched flames containing up to 50% hydrogen by volume, methane/propane mixtures containing up to 50% propane by volume. LBO limits, NOx emissions will be presented for different pressures. Most probable flame front positions and turbulent flame speeds are presented at a pressure of 5 bars for fuel mixtures between pure methane and 50% of each additive (propane and hydrogen). Experiments have revealed that a premixed mixture of 50% hydrogen and 50% methane, by volume, can significantly extend the lean blowout limit by up to 22% compared to pure methane. Because of a 120 K lower flame temperature a drastic reduction of the NOx emission (about 57%) is observed. Addition of hydrogen also significantly decreases the flame position (50%), changes the shape of the flame front and because of a higher global reaction rate increases the turbulent flame speed. Experiments with different methane/propane mixtures showed an increase (approximately 25–30%) of the NOx concentration at a propane content of 50%. Additionally, the flame stabilizes closer to the combustor inlet for higher propane contents.

Author(s):  
Pradeep Parajuli ◽  
Tyler Paschal ◽  
Mattias A. Turner ◽  
Eric L. Petersen ◽  
Waruna D. Kulatilaka

Abstract Natural gas is a major fuel source for many industrial and power-generation applications. The primary constituent of natural gas is methane (CH4), while smaller quantities of higher order hydrocarbons such as ethane (C2H6) and propane (C3H8) can also be present. Detailed understanding of natural gas combustion is important to obtain the highest possible combustion efficiency with minimal environmental impact in devices such as gas turbines and industrial furnaces. For a better understanding the combustion performance of natural gas, several important parameters to study are the flame temperature, heat release zone, flame front evolution, and laminar flame speed as a function of flame equivalence ratio. Spectrally and temporally resolved, high-speed chemiluminescence imaging can provide direct measurements of some of these parameters under controlled laboratory conditions. A series of experiments were performed on premixed methane/ethane-air flames at different equivalence ratios inside a closed flame speed vessel that allows the direct observation of the spherically expanding flame front. The vessel was filled with the mixtures of CH4 and C2H6 along with respective partial pressures of O2 and N2, to obtain the desired equivalence ratios at 1 atm initial pressure. A high-speed camera coupled with an image intensifier system was used to capture the chemiluminescence emitted by the excited hydroxyl (OH*) and methylidyne (CH*) radicals, which are two of the most important species present in the natural gas flames. The calculated laminar flame speeds for an 80/20 methane/ethane blend based on high-speed chemiluminescence images agreed well with the previously conducted Z-type schlieren imaging-based measurements. A high-pressure test, conducted at 5 atm initial pressure, produced wrinkles in the flame and decreased flame propagation rate. In comparison to the spherically expanding laminar flames, subsequent turbulent flame studies showed the sporadic nature of the flame resulting from multiple flame fronts that were evolved discontinuously and independently with the time. This paper documents some of the first results of quantitative spherical flame speed experiments using high-speed chemiluminescence imaging.


Author(s):  
Thomas Bexten ◽  
Sophia Jörg ◽  
Nils Petersen ◽  
Manfred Wirsum ◽  
Pei Liu ◽  
...  

Abstract Climate science shows that the limitation of global warming requires a rapid transition towards net-zero emissions of greenhouse gases (GHG) on a global scale. Expanding renewable power generation is seen as an imperative measure within this transition. To compensate for the inherent volatility of renewable power generation, flexible and dispatchable power generation technologies such as gas turbines are required. If operated with CO2-neutral hydrogen or in combination with carbon capture plants, a GHG-neutral gas turbine operation could be achieved. An effective leverage to enhance carbon capture efficiency and a possible measure to safely burn hydrogen in gas turbines is the partial external recirculation of exhaust gas. By means of a model-based analysis of a gas turbine, the present study initially assesses the thermodynamic impact caused by a fuel switch from natural gas to hydrogen. Although positive trends such as increasing net electrical power output and thermal efficiency can be observed, the overall effect on the gas turbine process is only minor. In a following step, the partial external recirculation of exhaust gas is evaluated and compared both for the combustion of natural gas and hydrogen, regardless of potential combustor design challenges. The influence of altering working fluid properties throughout the whole gas turbine process is thermodynamically evaluated for ambient temperature recirculation and recirculation at an elevated temperature. A reduction in thermal efficiency can be observed as well as non-negligible changes of relevant process variables. These changes are more distinctive at a higher recirculation temperature


Author(s):  
Thomas Bexten ◽  
Sophia Jörg ◽  
Nils Petersen ◽  
Manfred Wirsum ◽  
Pei Liu ◽  
...  

Abstract Climate science shows that the limitation of global warming requires a rapid transition towards net-zero emissions of green house gases (GHG) on a global scale. Expanding renewable power generation in a significant way is seen as an imperative measure within this transition. To compensate for the inherent volatility of wind- and solar-based power generation, flexible and dispatchable power generation technologies such as gas turbines are required. If operated with CO2-neutral fuels such as hydrogen or in combination with carbon capture plants, a GHG-neutral gas turbine operation could be achieved. An effective leverage to enhance carbon capture efficiency and a possible measure to safely burn hydrogen in gas turbines is the partial external recirculation of exhaust gas. By means of a model-based analysis of an industrial gas turbine, the present study initially assesses the thermodynamic impact caused by a fuel switch from natural gas to hydrogen. Although positive trends such as increasing net electrical power output and thermal efficiency can be observed, the overall effect on the gas turbine process is only minor. In a following step, the partial external recirculation of exhaust gas is evaluated and compared both for the combustion of natural gas and hydrogen, regardless of potential combustor design challenges. The influence of altering working fluid properties throughout the whole gas turbine process is thermodynamically evaluated for ambient temperature recirculation and recirculation at an elevated temperature. A reduction in thermal efficiency can be observed as well as non-negligible changes of relevant process variables. These changes are are more distinctive at a higher recirculation temperature.


Author(s):  
Elliot Sullivan-Lewis ◽  
Vincent McDonell

Lean-premixed gas turbines are now common devices for low emissions stationary power generation. By creating a homogeneous mixture of fuel and air upstream of the combustion chamber, temperature variations are reduced within the combustor, which reduces emissions of nitrogen oxides. However, by premixing fuel and air, a potentially flammable mixture is established in a part of the engine not designed to contain a flame. If the flame propagates upstream from the combustor (flashback), significant engine damage can result. While significant effort has been put into developing flashback resistant combustors, these combustors are only capable of preventing flashback during steady operation of the engine. Transient events (e.g., auto-ignition within the premixer and pressure spikes during ignition) can trigger flashback that cannot be prevented with even the best combustor design. In these cases, preventing engine damage requires designing premixers that will not allow a flame to be sustained. Experimental studies were conducted to determine under what conditions premixed flames of hydrogen and natural gas can be anchored in a simulated gas turbine premixer. Tests have been conducted at pressures up to 9 atm, temperatures up to 750 K, and freestream velocities between 20 and 100 m/s. Flames were anchored in the wakes of features typical of premixer passageways, including cylinders, steps, and airfoils. The results of this study have been used to develop an engineering tool that predicts under what conditions a flame will anchor, and can be used for development of flame anchoring resistant gas turbine premixers.


Author(s):  
P. Griebel ◽  
R. Bombach ◽  
A. Inauen ◽  
R. Scha¨ren ◽  
S. Schenker ◽  
...  

The present experimental study focuses on flame characteristics and turbulent flame speeds of lean premixed flames typical for stationary gas turbines. Measurements were performed in a generic combustor at a preheating temperature of 673 K, pressures up to 14.4 bars (absolute), a bulk velocity of 40 m/s, and an equivalence ratio in the range of 0.43–0.56. Turbulence intensities and integral length scales were measured in an isothermal flow field with Particle Image Velocimetry (PIV). The turbulence intensity (u′) and the integral length scale (LT) at the combustor inlet were varied using turbulence grids with different blockage ratios and different hole diameters. The position, shape, and fluctuation of the flame front were characterized by a statistical analysis of Planar Laser Induced Fluorescence images of the OH radical (OH-PLIF). Turbulent flame speeds were calculated and their dependence on operating conditions (p, φ) and turbulence quantities (u′, LT) are discussed and compared to correlations from literature. No influence of pressure on the most probable flame front position or on the turbulent flame speed was observed. As expected, the equivalence ratio had a strong influence on the most probable flame front position, the spatial flame front fluctuation, and the turbulent flame speed. Decreasing the equivalence ratio results in a shift of the flame front position farther downstream due to the lower fuel concentration and the lower adiabatic flame temperature and subsequently lower turbulent flame speed. Flames operated at leaner equivalence ratios show a broader spatial fluctuation as the lean blow-out limit is approached and therefore are more susceptible to flow disturbances. In addition, because of a lower turbulent flame speed these flames stabilize farther downstream in a region with higher velocity fluctuations. This increases the fluctuation of the flame front. Flames with higher turbulence quantities (u′, LT) in the vicinity of the combustor inlet exhibited a shorter length and a higher calculated flame speed. An enhanced turbulent heat and mass transport from the recirculation zone to the flame root location due to an intensified mixing which might increase the preheating temperature or the radical concentration is believed to be the reason for that.


Author(s):  
Oanh Nguyen ◽  
Scott Samuelsen

In view of increasingly stringent NOx emissions regulations on stationary gas turbines, lean combustion offers an attractive option to reduce reaction temperatures and thereby decrease NOx production. Under lean operation, however, the reaction is vulnerable to blowout. It is herein postulated that pilot hydrogen dopant injection, discretely located, can enhance the lean blowout performance without sacrificing overall performance. The present study addresses this hypothesis in a research combustor assembly, operated at atmospheric pressure, and fired on natural gas using rapid mixing injection, typical of commercial units. Five hydrogen injector scenarios are investigated. The results show that (1) pilot hydrogen dopant injection, discretely located, leads to improved lean blowout performance and (2) the location of discrete injection has a significant impact on the effectiveness of the doping strategy.


2011 ◽  
Vol 133 (04) ◽  
pp. 52-52
Author(s):  
Rainer Kurz

This article discusses the importance of gas turbines, centrifugal compressors and pumps, and other turbomachines in processes that bring natural gas to the end users. To be useful, the natural gas coming from a large number of small wells has to be gathered. This process requires compression of the gas in several stages, before it is processed in a gas plant, where contaminants and heavier hydrocarbons are stripped from the gas. From the gas plant, the gas is recompressed and fed into a pipeline. In all these compression processes, centrifugal gas compressors driven by industrial gas turbines or electric motors play an important role. Turbomachines are used in a variety of applications for the production of oil and associated gas. For example, gas turbine generator sets often provide electrical power for offshore platforms or remote oil and gas fields. Offshore platforms have a large electrical demand, often requiring multiple large gas turbine generator sets. Similarly, centrifugal gas compressors, driven by gas turbines or by electric motors are the benchmark products to pump gas through pipelines, anywhere in the world.


Author(s):  
Markus Bohlin ◽  
Mathias Wa¨rja

High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples where gas turbines are used include the mechanical drive in natural gas pipelines and power generation on oil platforms, where it is common to use redundant gas turbines to mitigate the effects of service outage. In this paper, component-level maintenance of parallel multi-unit systems is considered, allowing production at a reduced level when some of the units are not operational. Units are themselves assumed to be composed out of components in a serial configuration; maintenance of one component implies shutdown of the unit. Parallel installations allow maintenance to be performed on one or a few gas turbines without taking down the entire installation. This allows maintenance to be optimized even further than in a serial system. However, the maintenance optimization process is made more complicated, since there now exist both positive and negative grouping effects. The positive grouping effects come from shared setup activities and costs, and the negative effects come from resource limitations, in this case the limited number of gas turbines which can be maintained at the same time. In the approach presented in this paper, each component has its individual preventive maintenance schedule, which is updated at inspections, changes in production and when indicated using remote condition monitoring. A minimal repair model for noncritical routine inspections and service tasks is assumed, which does not affect component state. In addition, previously developed procedures for estimating and measuring residual component lifetime for individual components during operation are used. The procedures are based on a Retirement For Cause (RFC) approach where components are not replaced until a potential failure has been detected. To maximize revenues for an operator, the available information is evaluated using software where scenario analysis and optimization is performed. To show the possible economic effects, gas turbine operation data is used together with maintenance and operator requirements as input for optimization of a production line consisting of a natural-gas compressor station having three SGT-600 gas turbines. Savings can be substantial compared to a traditional preventive maintenance plan.


Author(s):  
V. G. McDonell ◽  
M. W. Effinger ◽  
J. L. Mauzey

The deployment of small gas turbines at landfills and wastewater treatment plants is attractive due to the availability of waste fuel gases generated at these sites and the need for onsite power and/or heat. The fuel gases produced by these applications typically contain 35 to 75% of the heating value of natural gas and contain methane (CH4) diluted primarily with carbon dioxide (CO2) and sometimes nitrogen (N2). Demonstrations of 30 to 250 kW gas turbines operating on these waste fuels are underway, but little detailed information on the systematic effect of the gas composition on performance is available. Growth in the use of small gas turbines for these applications will likely require that they meet increasingly stringent emission regulations, creating a need to better understand and to further optimize emissions performance for these gases. The current study characterizes a modified commercial natural gas fired 60 kW gas turbine operated on simluated gases of specified composition and establishes a quantitative relationship between fuel composition, engine load, and emissions performance. The results can be used to determine the expected impact of gas composition on emissions performance.


2015 ◽  
Vol 656-657 ◽  
pp. 113-118
Author(s):  
Hsiu Mei Chiu ◽  
Po Chuang Chen ◽  
Yau Pin Chyou ◽  
Ting Wang

The effect of synthetic natural gas (SNG) and mixture of syngas and SNG fed to Natural Gas Combined-Cycle (NGCC) plants is presented in this study via a system-level simulation model. The commercial chemical process simulator, Pro/II®V8.1.1, was used in the study to build the analysis model. The NGCC plant consists of gas turbine (GT), heat recovery steam generator (HRSG) and steam turbine (ST). The study envisages two analyses as the basic and feasibility cases. The former is the benchmark case which is verified by the reference data with the GE 7FB gas turbine. According to vendor’s specification, the typical net plant efficiency of GE 7FB NGCC with two gas turbines to one steam turbine is 57.5% (LHV), and the efficiency is the benchmark in the simulation model built in the study. The latter introduces a feasibility study with actual parameters in Taiwan. The SNG-fed GE 7FB based combined-cycle is evaluated, and the mixture of SNG and syngas is also evaluated to compare the difference of overall performance between the two cases. The maximum ratio of syngas to SNG is 0.14 due to the constraint for keeping the composition of methane at a value of 80 mol%, to meet the minimum requirement of NG in Taiwan. The results show that the efficiency in either case of SNG or mixture of SNG and syngas is slightly lower than the counterpart in the benchmark one. Because the price of natural gas is much higher than that of coal, it results in higher idle capacity of NGCC. The advantage of adopting SNG in Taiwan is that it could increase the capacity factor of combined-cycles in Taiwan. The study shows a possible way to use coal and reduce the CO2emission, since coal provides nearly half of the electricity generation in Taiwan in recent years.


Sign in / Sign up

Export Citation Format

Share Document