Conjugate Heat Transfer Modeling of a Film-Cooled, Flat-Plate Test Specimen in a Gas Turbine Aerothermal Test Facility

Author(s):  
T. G. Sidwell ◽  
S. A. Lawson ◽  
D. L. Straub ◽  
K. H. Casleton ◽  
S. Beer

The aerothermal test facility at the National Energy Technology Laboratory (NETL) provides experimental data at realistic gas turbine conditions to enable the development of advanced film cooling strategies for future gas turbine components. To complement ongoing experimental studies, Fluent computational fluid dynamics (CFD) models have been developed to provide a framework for comparison of cooling strategies and to provide fundamental understanding of the fluid dynamic and conjugate heat transfer (CHT) processes occurring in the experiments. The results of a parametric study of the effects of mesh density, near-wall refinement, wall treatment, turbulence model and gradient discretization order on the CHT predictions are presented, and the simulation results are compared to experimental data. A flat plate test specimen with a single row of laidback fan-shaped film cooling holes was modeled at a process pressure of 3 bar, a process gas flow rate (m) of 0.325 kg/s (Re ≈ 100,000) and a blowing ratio (M) of 2.75. Three polyhedral mesh cases and three turbulence models (Realizable k-ε, SST k-ω and RSM Stress-ω) were implemented with enhanced wall treatment (EWT) and 1st-order and 2nd-order gradient discretization. The results show that the choice of turbulence model will have little effect on the results when utilizing the finest mesh case and 2nd-order discretization. It was also shown that the SST k-ω turbulence model cases showed minimal mesh sensitivity with 2nd-order discretization, while the Re k-ε turbulence model cases were more sensitive to mesh density and near-wall refinement. The results thus indicate that the SST k-ω turbulence model can predict the convective heat transfer adequately with a relatively coarse mesh, which will save computational resources for later inclusion of radiative heat transfer effects to provide comprehensive CHT predictions.

Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongyan Huang ◽  
Wanjin Han

The ANSYS-CFX software is used to simulate NASA-Mark II high pressure air-cooled gas turbine. The work condition is Run 5411 which have transition flow characteristics. The different turbulence models are adopted to solve conjugate heat transfer problem of this three-dimensional turbine blade. Comparing to the experimental results, k-ω-SST-γ-θ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature of suction side is higher. In this paper, the compiled code adopts the B-L algebra model and simulates the same computation model. The results show that the results of B-L model are accurate besides it has 4% temperature error in the suction side transition region. In addition, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine. ANSYS is applied to analysis the thermal stress of Mark II blade which has ten radial cooled passages and the results of Von Mises stress show that the temperature gradient results have a great effect on the results of blade thermal stress.


Author(s):  
Jong-Shang Liu ◽  
Mark C. Morris ◽  
Malak F. Malak ◽  
Randall M. Mathison ◽  
Michael G. Dunn

In order to have higher power to weight ratio and higher efficiency gas turbine engines, turbine inlet temperatures continue to rise. State-of-the-art turbine inlet temperatures now exceed the turbine rotor material capability. Accordingly, one of the best methods to protect turbine airfoil surfaces is to use film cooling on the airfoil external surfaces. In general, sizable amounts of expensive cooling flow delivered from the core compressor are used to cool the high temperature surfaces. That sizable cooling flow, on the order of 20% of the compressor core flow, adversely impacts the overall engine performance and hence the engine power density. With better understanding of the cooling flow and accurate prediction of the heat transfer distribution on airfoil surfaces, heat transfer designers can have a more efficient design to reduce the cooling flow needed for high temperature components and improve turbine efficiency. This in turn lowers the overall specific fuel consumption (SFC) for the engine. Accurate prediction of rotor metal temperature is also critical for calculations of cyclic thermal stress, oxidation, and component life. The utilization of three-dimensional computational fluid dynamics (3D CFD) codes for turbomachinery aerodynamic design and analysis is now a routine practice in the gas turbine industry. The accurate heat-transfer and metal-temperature prediction capability of any CFD code, however, remains challenging. This difficulty is primarily due to the complex flow environment of the high-pressure turbine, which features high speed rotating flow, coupling of internal and external unsteady flows, and film-cooled, heat transfer enhancement schemes. In this study, conjugate heat transfer (CHT) simulations are performed on a high-pressure cooled turbine stage, and the heat flux results at mid span are compared to experimental data obtained at The Ohio State University Gas Turbine Laboratory (OSUGTL). Due to the large difference in time scales between fluid and solid, the fluid domain is simulated as steady state while the solid domain is simulated as transient in CHT simulation. This paper compares the unsteady and transient results of the heat flux on a high-pressure cooled turbine rotor with measurements obtained at OSUGTL.


Author(s):  
Andreas Jeromin ◽  
Christian Eichler ◽  
Berthold Noll ◽  
Manfred Aigner

Numerical predictions of conjugate heat transfer on an effusion cooled flat plate were performed and compared to detailed experimental data. The commercial package CFX® is used as flow solver. The effusion holes in the referenced experiment had an inclination angle of 17 degrees and were distributed in a staggered array of 7 rows. The geometry and boundary conditions in the experiments were derived from modern gas turbine combustors. The computational domain contains a plenum chamber for coolant supply, a solid wall and the main flow duct. Conjugate heat transfer conditions are applied in order to couple the heat fluxes between the fluid region and the solid wall. The fluid domain contains 2.4 million nodes, the solid domain 300,000 nodes. Turbulence modeling is provided by the SST turbulence model which allows the resolution of the laminar sublayer without wall functions. The numerical predictions of velocity and temperature distributions at certain locations show significant differences to the experimental data in velocity and temperature profiles. It is assumed that this behavior is due to inappropriate modeling of turbulence especially in the effusion hole. Nonetheless, the numerically predicted heat transfer coefficients are in good agreement with the experimental data at low blowing ratios.


Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongfei Tang ◽  
Hongyan Huang ◽  
Wanjin Han

The different turbulence models are adopted to simulate NASA-MarkII high pressure air-cooled gas turbine. The experimental work condition is Run 5411. The paper researches that the effect of different turbulence models for the flow and heat transfer characteristics of turbine. The turbulence models include: the laminar turbulence model, high Reynolds number k-ε turbulence model, low Reynolds number turbulence model (k-ω standard format, k-ω-SST and k-ω-SST-γ-θ) and B-L algebra turbulence model which is adopted by the compiled code. The results show that the different turbulence models can give good flow characteristics results of turbine, but the heat transfer characteristics results are different. Comparing to the experimental results, k-ω-SST-θ-γ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature is higher. The results of B-L algebra turbulence model show that the results of B-L model are accurate besides it has 4% temperature error in the transition region. As to the other turbulence models, the results show that all turbulence models can simulate the temperature distribution on the blade pressure surface except the laminar turbulence model underestimates the heat transfer coefficient of turbulence flow region. On the blade suction surface with transition flow characteristics, high Reynolds number k-ε turbulence model overestimates the heat transfer coefficient and causes the blade surface temperature is high about 90K than the experimental result. Low Reynolds number k-ω standard format and k-ω-SST turbulence models also overestimate the blade surface temperature value. So it can draw a conclusion that the unreasonable choice of turbulence models can cause biggish errors for conjugate heat transfer problem of turbine. The combination of k-ω-SST-γ-θ model and B-L algebra model can get more accurate turbine thermal environment results. In addition, in order to obtain the affect of different turbulence models for gas turbine conjugate heat transfer problem. The different turbulence models are adopted to simulate the different computation mesh domains (First case and Second case). As to each cooling passages, the first case gives the wall heat transfer coefficient of each cooling passages and the second case considers the conjugate heat transfer course between the cooling passages and blade. It can draw a conclusion that the application of heat transfer coefficient on the wall of each cooling passages avoids the accumulative error. So, for the turbine vane geometry models with complex cooling passages or holes, the choice of turbulence models and the analysis of different mesh domains are important. At last, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1007 ◽  
Author(s):  
Du ◽  
Mei ◽  
Zou ◽  
Jiang ◽  
Xie

Numerical calculation of conjugate heat transfer was carried out to study the effect of combined film and swirl cooling at the leading edge of a gas turbine vane with a cooling chamber inside. Two cooling chambers (C1 and C2 cases) were specially designed to generate swirl in the chamber, which could enhance overall cooling effectiveness at the leading edge. A simple cooling chamber (C0 case) was designed as a baseline. The effects of different cooling chambers were studied. Compared with the C0 case, the cooling chamber in the C1 case consists of a front cavity and a back cavity and two cavities are connected by a passage on the pressure side to improve the overall cooling effectiveness of the vane. The area-averaged overall cooling effectiveness of the leading edge () was improved by approximately 57%. Based on the C1 case, the passage along the vane was divided into nine segments in the C2 case to enhance the cooling effectiveness at the leading edge, and was enhanced by 75% compared with that in the C0 case. Additionally, the cooling efficiency on the pressure side was improved significantly by using swirl-cooling chambers. Pressure loss in the C2 and C1 cases was larger than that in the C0 case.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Jason E. Dees ◽  
David G. Bogard ◽  
Gustavo A. Ledezma ◽  
Gregory M. Laskowski

Recent advances in computational power have made conjugate heat transfer simulations of fully conducting, film cooled turbine components feasible. However, experimental data available with which to validate conjugate heat transfer simulations is limited. This paper presents experimental measurements of external surface temperature on the suction side of a scaled up, fully conducting, cooled gas turbine vane. The experimental model utilizes the matched Bi method, which produces nondimensional surface temperature measurements that are representative of engine conditions. Adiabatic effectiveness values were measured on an identical near adiabatic vane with an identical geometry and cooling configuration. In addition to providing a valuable data set for computational code validation, the data shows the effect of film cooling on the surface temperature of a film cooled part. As expected, in nearly all instances, the addition of film cooling was seen to decrease the overall surface temperature. However, due to the effect of film injection causing early boundary layer transition, film cooling at a high momentum flux ratio was shown to actually increase surface temperature over 0.35 < s/C < 0.45.


Author(s):  
William Humber ◽  
Ron-Ho Ni ◽  
Jamie Johnson ◽  
John Clark ◽  
Paul King

Conjugate heat transfer (CHT) simulations were conducted for five film-cooled flat plates designed to model the pressure side of the High Impact Technologies Research Turbine First Vane (HIT RT1V). The numerical results of the CHT analysis were compared against experimental data. The five test cases consist of one baseline geometry and four different cooling hole geometries applied to a film-cooling hole arrangement that was optimized to achieve a more uniform cooling effectiveness. This optimized film-cooling hole configuration was designed by coupling a genetic algorithm with a Navier-Stokes fluid solver, using source terms to model film holes, starting from a baseline cooling configuration. All five plates were manufactured, and surface temperature measurements were taken using infrared thermography while the plates were exposed to flow conditions similar to the pressure side of the HIT RT1V. CHT simulations were carried out using unstructured meshes for both fluid and solid with all film holes fully resolved. Comparison of experimental data and simulations shows a consistent trend between the optimized configurations as well as correct predictions of the flow characteristics of each hole geometry although the absolute temperatures are underpredicted by the CHT. Both experimental measurements and CHT predictions show the optimized geometry with mini-trenched-shaped holes to give the best cooling effectiveness.


Author(s):  
Jason E. Dees ◽  
David G. Bogard ◽  
Gustavo A. Ledezma ◽  
Gregory M. Laskowski

Recent advances in computational power have made conjugate heat transfer simulations of fully conducting, film cooled turbine components feasible. However, experimental data available with which to validate conjugate heat transfer simulations is limited. This paper presents experimental measurements of external surface temperature on the suction side of a scaled up, fully conducting, cooled gas turbine vane. The experimental model utilizes the matched Bi method, which produces non-dimensional surface temperature measurements that are representative of engine conditions. Adiabatic effectiveness values were measured on an identical near adiabatic vane with an identical geometry and cooling configuration. In addition to providing a valuable data set for computational code validation, the data shows the effect of film cooling on the surface temperature of a film cooled part. As expected, in nearly all instances the addition of film cooling was seen to decrease the overall surface temperature. However, due to the effect of film injection causing early boundary layer transition, film cooling at a high momentum flux ratio was shown to actually increase surface temperature over 0.35 < s/C < 0.45.


Author(s):  
Bruno Facchini ◽  
Andrea Magi ◽  
Alberto Scotti Del Greco

A 3D conjugate heat transfer simulation of a radially cooled gas turbine vane has been performed using STAR-CD™ code and the metal temperature distribution of the blade has been obtained. The study focused on the linear NASA-C3X cascade, for which experimental data are available; the blade is internally cooled by air through ten radially oriented circular cross section channels. According to the chosen approach, boundary conditions for the conjugate analysis were specified only at the inlet and outlet planes and on the openings of the internal cooling channels: neither temperature distribution nor heat flux profile were assigned along the walls. Static pressure, external temperature and heat transfer coefficient distributions along the vane were compared with experimental data. In addition, in order to asses the impact of transition on heat transfer profile, just the external flow (supposed fully turbulent in the conjugate approach) was separately simulated with TRAF code too and the behaviour of the transitional boundary layer has been analyzed and discussed. Loading distributions were found to be in good agreement with experiments for both conjugate and non conjugate approaches, but, since both pressure and suction side exhibit a typical transitional behavior, HTC profiles obtained without taking into account transition severely overestimate experimental data especially near the leading edge. Results confirm the significant role of transition in predicting heat transfer and, therefore, vane temperature field when a conjugate analysis is performed.


Sign in / Sign up

Export Citation Format

Share Document