Combustion System Update SGT5-4000F: Design, Testing and Validation

Author(s):  
Boris F. Kock ◽  
Bernd Prade ◽  
Benjamin Witzel ◽  
Holger Streb ◽  
Mike H. Koenig

The first Siemens AG SGT5-4000F engine with hybrid burner ring combustor (HBR) was introduced in 1996. Since then, frequent evolutionary design improvements of the combustion system were introduced to fulfill the continuously changing market requirements. The improvements particularly focused on increased thermodynamic performance, reduced emissions, and increasing operational flexibility in terms of load gradients, fuel flexibility, and turndown capability. According to the Siemens product development process, every design evolution had to pass several validation steps to ensure high reliability and best performance. The single steps included cold flow and mixing tests at atmospheric pressure, high-pressure combustion tests in full-scale sector combustion test rigs, and full engine tests at the Berlin test facility (BTF). After successful validation, the design improvements were gradually released for commercial operation. In a first step, cooling air reduction features have been implemented in 2005, followed by the introduction of a premixed pilot as second step in 2006. Both together resulted in a significant reduction of the NOx emissions of the system. In a third step, an aerodynamic burner modification was introduced in 2007, which improved the thermo-acoustic stability of the system towards higher turbine inlet temperatures and adapted to fuel preheating to allow for increased cycle efficiency. All three features together have been released as package in 2010 and to date accumulated more than 50,000 operating hours (fleet leader 24,000). This paper reports upon the steps towards this latest design status of the SGT5-4000F and presents results from typical focus areas of lean premixed combustion systems in gas turbines including aero-dynamical optimization, fuel/air mixing improvements and cooling air management in the combustor.

Author(s):  
A. Duncan Walker ◽  
Bharat Koli ◽  
Liang Guo ◽  
Peter Beecroft ◽  
Marco Zedda

To manage the increasing turbine temperatures of future gas turbines a cooled cooling air system has been proposed. In such a system some of the compressor efflux is diverted for additional cooling in a heat exchanger (HX) located in the bypass duct. The cooled air must then be returned, across the main gas path, to the engine core for use in component cooling. One option is do this within the combustor module and two methods are examined in the current paper; via simple transfer pipes within the dump region or via radial struts in the prediffuser. This paper presents an experimental investigation to examine the aerodynamic impact these have on the combustion system external aerodynamics. This included the use of a fully annular, isothermal test facility incorporating a bespoke 1.5 stage axial compressor, engine representative outlet guide vanes (OGVs), prediffuser, and combustor geometry. Area traverses of a miniature five-hole probe were conducted at various locations within the combustion system providing information on both flow uniformity and total pressure loss. The results show that, compared to a datum configuration, the addition of transfer pipes had minimal aerodynamic impact in terms of flow structure, distribution, and total pressure loss. However, the inclusion of prediffuser struts had a notable impact increasing the prediffuser loss by a third and consequently the overall system loss by an unacceptable 40%. Inclusion of a hybrid prediffuser with the cooled cooling air (CCA) bleed located on the prediffuser outer wall enabled an increase of the prediffuser area ratio with the result that the system loss could be returned to that of the datum level.


Author(s):  
Bertram Janus ◽  
Joachim Bigalk ◽  
Lennard Helmers ◽  
Benjamin Witzel ◽  
Yohannes Ghermay ◽  
...  

An upgrade of the lean premixed combustion system installed in the SGT5-8000H in Irsching/Germany was developed for the 50 Hz and 60 Hz versions of the SGTX-8000H gas turbines. It features lower CO and NOx emissions by improving combustion aerodynamics and reduction of the air consumption of the combustion system. Furthermore an improved secondary air managing system increases the amount of air, which can be supplied in a controllable way to the turbine in part load operation and, thus, increases the combustor temperature. This is done in stepwise increasing the air mass flow to the turbine by feeding compressor exit air to different distinct turbine stages. All in all this system extends the turn down capability beyond the level achievable by the new combustion system alone. The new combustion system and the secondary air managing system were installed in full scale and tested in the SGT6-8000H test facility of the Siemens Gas turbine plant in Berlin. The results have subsequently successfully been validated in the first commercial application on a customer site. This paper presents the technical features of the systems, the development program and the test results.


Author(s):  
Festus Eghe Agbonzikilo ◽  
Ieuan Owen ◽  
Jill Stewart ◽  
Suresh Kumar Sadasivuni ◽  
Mike Riley ◽  
...  

This paper presents the results of an investigation in which the fuel/air mixing process in a single slot within the radial swirler of a dry low emission (DLE) combustion system is explored using air/air mixing. Experimental studies have been carried out on an atmospheric test facility in which the test domain is a large-scale representation of a swirler slot from a Siemens proprietary DLE combustion system. Hot air with a temperature of 300 °C is supplied to the slot, while the injected fuel gas is simulated using air jets with temperatures of about 25 °C. Temperature has been used as a scalar to measure the mixing of the jets with the cross-flow. The mixture temperatures were measured using thermocouples while Pitot probes were used to obtain local velocity measurements. The experimental data have been used to validate a computational fluid dynamics (CFD) mixing model. Numerical simulations were carried out using CFD software ansys-cfx. Due to the complex three-dimensional flow structure inside the swirler slot, different Reynolds-averaged Navier–Stokes (RANS) turbulence models were tested. The shear stress transport (SST) turbulence model was observed to give best agreement with the experimental data. The momentum flux ratio between the main air flow and the injected fuel jet, and the aerodynamics inside the slot were both identified by this study as major factors in determining the mixing characteristics. It has been shown that mixing in the swirler can be significantly improved by exploiting the aerodynamic characteristics of the flow inside the slot. The validated CFD model provides a tool which will be used in future studies to explore fuel/air mixing at engine conditions.


Author(s):  
Seung-chai Jung ◽  
Siwon Yang ◽  
Shaun Kim ◽  
Ik Soo Kim ◽  
Chul-ju Ahn ◽  
...  

Due to increasing environmental concerns, clean technology has become a key feature in industrial gas turbines. Swirler design is directly associated with the combustion performance for its roles in fuel distribution and flame stability. In this study, the development process of three new conceptual swirlers from Samsung Techwin is presented. Each swirler has unique features to enhance fuel-to-air mixing; Swirler 1 uses tangential air-bypass, Swirler 2 minimizes pressure loss using impeller-like design, and Swirler 3 has combined flow characteristics of axial and radial swirlers. Using extensive computational fluid dynamics (CFD) analysis, lead time and cost in manufacturing the prototypes were significantly reduced. The numerical methods were verified with a lab-scale combustion test; particle image velocimetry (PIV) measurement of cold flow, direct flame images, and OH planar laser induced fluorescence (PLIF) images were compared with result of large-eddy simulation (LES), and they showed good agreement. After design optimization using CFD, full-scale combustion tests were performed for all three swirlers. Flame from each swirler was visualized using a cylindrical quartz liner; direct images and OH chemiluminescence images of flames were obtained. Flame stability and blow-off limit at various air load were examined by gradually lowering the equivalence ratio. NOx and CO concentration were measured at the exhaust. All three swirlers satisfied low NOx and CO levels at the design conditions. The performance maps bounded by the NOx and CO limits and blow-off limit were obtained for all swirlers. Further efforts to maximize the combustors performance will be made.


Author(s):  
Manuel E. C. Ferreira ◽  
Jorge J. G. Martins ◽  
Jose´ C. F. Teixeira

This paper reports the geometrical optimization of an effervescent atomizer used in the combustion of used recycled oils. The objective was to obtain stable flames while minimizing the emission levels. A test facility was designed and constructed, which included: a furnace rated at a thermal input of 300 kW and a swirl generator as a part of the burner setup for the application of the effervescent atomizer. Other auxiliary facilities were also included, such as: cooling system, air supplies and pre-heating gas burner. Combustion tests were carried out with used recycled oil having a viscosity of 46 mm2/s (50°C) and a higher heating value of 44.6 MJ/kg. Results included qualitative observations of the ignition and flame stabilization, emission concentrations and LDA velocity measurements of the flow field produced by the swirl generator with and without flame. The results show a good performance of the swirl generator in the process of fuel/air mixing inside the furnace, which results in very low emission levels. The various tests carried out with different geometric configurations of the burning facility clearly suggest that the high velocity and penetration of the spray require an adequate design of the swirl generator and the nozzle orifice, in order to obtain a good air/fuel mixture inside the furnace.


Author(s):  
Hasan Karim ◽  
Jayaprakash Natarajan ◽  
Venkat Narra ◽  
Jun Cai ◽  
Shreekrishna Rao ◽  
...  

Driven by global warming, a relentless march towards increased fuel efficiency has resulted in increased firing temperature for HA-class engines without an increase in baseload emissions. Moreover, emissions compliance for CO, NOx, and unburned hydrocarbons are desired over increased range in gas turbine load. In addition, exceptional gas turbine operational flexibility is desired to address potential intermittency due to the penetration of renewables in the electrical grid. Staged/sequential combustion is a state of the technology to provide operational flexibility and reduced emissions in power generation gas turbines. GE Power’s 7HA-class gas turbine combustion system combines GE’s proven DLN-2.6+ combustion technology, that has run reliably for over 1.3 million fired hours across more than eighty 9FA.03, 9F.05 & 7FA gas turbine engines, with an axially fuel staged system (AFS). Axially staging combustion to two zones allows for increased firing temperature at baseload (while maintaining the same NOx level) by operating the later/second stage hotter than the first/primary stage. During low load operation as the gas turbine firing temperature is reduced, percentage fuel split in the staged fuel system can either be reduced significantly or turned off and thereby keeping the overall combustion system into emissions compliance over a wider range of firing temperatures. This paper presents both the development testing of the staged combustion in the FA and HA class gas turbine combustion system rigs at GE Power’s Gas Turbine Technology Laboratory and the validation testing of staged combustion system for the 7HA.01 engine completed during Spring 2016 at GE Power’s engine test facility in Greenville, SC. The paper also discusses the significant simplification of operational principle and flexibility of startup, loading and baseload operation of the 7HA combustion system. Discussion of engine test results will show how axial fuel staging was utilized to demonstrate emissions compliance ( NOx (15% O2) < 25 ppm; CO < 9 ppm), operation from 14% load to 100% load with low combustion dynamics and also to enable wide wobbe capability, which is a normalized measure of fuel flexibility.


Author(s):  
Frank Reiss ◽  
Sven-Hendrik Wiers ◽  
Ulrich Orth ◽  
Emil Aschenbruck ◽  
Martin Lauer ◽  
...  

This paper describes the development and test results of the low emission combustion system for the new industrial gas turbines in the 6–7 MW class from MAN Diesel & Turbo. The design of a robust combustion system and the achievement of very low emission targets were the most important design goals of the combustor development. During the design phase, the analysis of the combustor (i.e. burner design, air distribution, liner cooling design) was supported with different CFD tools. This advanced Dry Low Emission can combustion system (ACC) consists of 6 cans mounted externally on the gas turbine. The behavior and performance of a single can sector was tested over a wide load range and with different boundary conditions; first on an atmospheric test rig and later on a high pressure test rig with extensive instrumentation to ensure an efficient test campaign and accurate data. The atmospheric tests showed a very good performance for all combustor parts and promising results. The high pressure tests demonstrated very stable behavior at all operation modes and very low emissions to satisfy stringent environmental requirements. The whole operation concept of the combustion system was tested first on the single-can high pressure test bed and later on twin and single shaft gas turbines at MAN’s gas turbine test facility. During the engine tests, the can combustors demonstrated the expected combustion performance under real operation conditions. All emissions and performance targets were fully achieved. On the single shaft engine, the combustors were running with single digit ppm NOx levels between 50% and 100% load. The validation phase and further optimization of the gas turbines and the engine components are ongoing. The highlights of the development process and results of the combustor and engine tests will be presented and discussed within this paper.


Author(s):  
Daniel Guyot ◽  
Gabrielle Tea ◽  
Christoph Appel

Reducing gas turbine emissions and increasing their operational flexibility are key targets in today’s gas turbine market. In order to further reduce emissions and increase the operational flexibility of its GT24 (60Hz) and GT26 (50Hz), Alstom has introduced an improved SEV burner and fuel lance into its GT24 upgrade 2011 and GT26 upgrade 2011 sequential reheat combustion system. Sequential combustion is a key differentiator of Alstom GT24 engines in the F-class gas turbine market. The inlet temperature for the GT24 SEV combustor is around 1000 degC and reaction of the fuel/oxidant mixture is initiated through auto-ignition. The recent development of the Alstom sequential combustion system is a perfect example of evolutionary design optimizations and technology transfer between Alstom GT24 and GT26 engines. Better overall performance is achieved through improved SEV burner aerodynamics and fuel injection, while keeping the main features of the sequential burner technology. The improved SEV burner/lance concept has been optimized towards rapid fuel/oxidant mixing for low emissions, improved fuel flexibility with regards to highly reactive fuels (higher C2+ and hydrogen content), and to sustain a wide operation window. In addition, the burner front panel features an improved cooling concept based on near-wall cooling as well as integrated acoustics damping devices designed to reduce combustion pulsations thus extending the SEV combustor’s operation window even further. After having been validated extensively in the Alstom high pressure sector rig test facility, the improved GT24 SEV burner has been retrofitted into a commercial GT24 field engine for full engine validation during long-term operation. This paper presents the obtained high pressure sector rig and engine validation results for the GT24 (2011) SEV burner/lance hardware with a focus on reduced NOX and CO emissions and improved operational behavior of the SEV combustor. The high pressure tests demonstrated robust SEV burner/lance operation with up to 50% lower NOX formation and a more than 70K higher SEV burner inlet temperature compared to the GT24 (2006) hardware. For the GT24 engine with retrofitted upgrade 2011 SEV burner/lance all validation targets were achieved including an extremely robust operation behavior, up to 40% lower GT NOX emissions, significantly lower CO emissions at partload and baseload, a very broad operation window (up to 100K width in SEV combustor inlet temperature) and all measured SEV burner/lance temperatures in the expected range. Sector rig and engine validation results have confirmed the expected SEV burner fuel flexibility (up to 18%-vol. C2+ and up to 5%-vol. hydrogen as standard).


Author(s):  
Ryan G. Edmonds ◽  
Robert C. Steele ◽  
Joseph T. Williams ◽  
Douglas L. Straub ◽  
Kent H. Casleton ◽  
...  

An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.


Author(s):  
Daniel Guyot ◽  
Gabrielle Tea ◽  
Christoph Appel

Reducing gas turbine emissions and increasing their operational flexibility are key targets in today's gas turbine market. In order to further reduce emissions and increase the operational flexibility of its GT24 (60 Hz) and GT26 (50 Hz), Alstom has introduced an improved sequential environmental (SEV) burner and fuel lance into its GT24 and GT26 upgrades 2011 sequential reheat combustion system. Sequential combustion is a key differentiator of Alstom GT24/GT26 engines in the F-class gas turbine market. The inlet temperature for the SEV combustor is around 1000 °C and reaction of the fuel/oxidant mixture is initiated through auto-ignition. The recent development of the Alstom sequential combustion system is a perfect example of evolutionary design optimizations and technology transfer between Alstom GT24 and GT26 engines. Better overall performance is achieved through improved SEV burner aerodynamics and fuel injection, while keeping the main features of the sequential burner technology. The improved SEV burner/lance concept has been optimized toward rapid fuel/oxidant mixing for low emissions, improved fuel flexibility with regard to highly reactive fuels (higher C2+ and hydrogen content), and to sustain a wide operation window. The burner front panel features an improved cooling concept based on near-wall cooling as well as integrated acoustics damping devices designed to reduce combustion pulsations, thus extending the SEV combustor's operation window even further. After having been validated extensively in Alstom's high pressure (HP) sector rig test facility, the improved GT24 SEV burner has been retrofitted into a commercial GT24 field engine for full engine validation during long-term operation. This paper presents the obtained HP sector rig and engine validation results for the GT24 (2011) SEV burner/lance hardware with a focus on reduced NOx and CO emissions and improved operational behavior of the SEV combustor. The HP tests demonstrated robust SEV burner/lance operation with up to 50% lower NOx formation and a more than 70 K higher SEV burner inlet temperature compared to the GT24 (2006) hardware. For the GT24 engine with retrofitted upgrade 2011 SEV burner/lance, all validation targets were achieved including an extremely robust operation behavior, up to 40% lower GT NOx emissions, significantly lower CO emissions at partload and baseload, a very broad operation window (up to 100 K width in SEV combustor inlet temperature), and all measured SEV burner/lance temperatures in the expected range. Sector rig and engine validation results have confirmed the expected SEV burner fuel flexibility (up to 18 vol. % C2+ and up to 5 vol. % hydrogen as standard).


Sign in / Sign up

Export Citation Format

Share Document