Effect of Coolant Injection Angle on Nozzle Endwall Film Cooling: Experimental and Numerical Analysis in Linear Cascade

Author(s):  
Lamyaa El-Gabry ◽  
Hongzhou Xu ◽  
Kevin Liu ◽  
James Chang ◽  
Michael Fox

Gas turbine components can withstand gas temperatures exceeding the melting point of the alloys they’re made of due to increasingly effective cooling methods. Increasing the operating temperature of a gas turbine is key to improving its power density and exhaust heat for steam or combined-cycle efficiency. In the turbine, the component that experiences the highest gas temperature is the vane directly downstream of the combustor; the most complex flow field in a vane occurs near the endwall. In this study, an experimental investigation is carried out to determine the effect of coolant injection angle and mass flow ratio on film effectiveness on the endwall using the pressure sensitive paint technique for various configurations of jump cooling hole configurations. Two rows of angled holes are upstream of an uncooled vane in a three-vane linear cascade. Injection angle including compound angle is varied from 20 to 60 and coolant to mainstream massflux ratio is varied from 0.5% to 3%. Contours of endwall surface film effectiveness are presented along with span-averaged film effectiveness. CFD models of the cascade are developed using a commercial solver to predict film effectiveness for some of the test conditions and comparisons are made between the experimental and numerical results. The CFD models provide further insight into the flow field and explain trends observed in the experiment by understanding the interaction of jump coolant flow with the 3D endwall mainstream flows.

2021 ◽  
Author(s):  
Takashi Nishiumi ◽  
Hirofumi Ohara ◽  
Kotaro Miyauchi ◽  
Sosuke Nakamura ◽  
Toshishige Ai ◽  
...  

Abstract In recent years, MHPS achieved a NET M501J gas turbine combined cycle (GTCC) efficiency in excess of 62% operating at 1,600°C, while maintaining NOx under 25ppm. Taking advantage of our gas turbine combustion design, development and operational experience, retrofits of earlier generation gas turbines have been successfully applied and will be described in this paper. One example of the latest J-Series technologies, a conventional pilot nozzle was changed to a premix type pilot nozzle for low emission. The technology was retrofitted to the existing F-Series gas turbines, which resulted in emission rates of lower than 9ppm NOx(15%O2) while maintaining the same Turbine Inlet Temperature (TIT: Average Gas Temperature at the exit of the transition piece). After performing retrofitting design, high pressure rig tests, the field test prior to commercial operation was conducted on January 2019. This paper describes the Ultra-Low NOx combustor design features, retrofit design, high pressure rig test and verification test results of the upgraded M501F gas turbine. In addition, it describes another upgrade of turbine to improve efficiency and of combustion control system to achieve low emissions. Furthermore it describes the trouble-free upgrade of seven (7) units, which was completed by utilizing MHPS integration capabilities, including handling all the design, construction and service work of the main equipment, plant and control systems.


Author(s):  
S. Can Gülen ◽  
Chris Hall

This paper describes a gas turbine combined cycle (GTCC) power plant system, which addresses the three key design challenges of postcombustion CO2 capture from the stack gas of a GTCC power plant using aqueous amine-based scrubbing method by offering the following: (i) low heat recovery steam generator (HRSG) stack gas temperature, (ii) increased HRSG stack gas CO2 content, and (iii) decreased HRSG stack gas O2 content. This is achieved by combining two bottoming cycle modifications in an inventive manner, i.e., (i) high supplementary (duct) firing in the HRSG and (ii) recirculation of the HRSG stack gas. It is shown that, compared to an existing natural gas-fired GTCC power plant with postcombustion capture, it is possible to reduce the CO2 capture penalty—power diverted away from generation—by almost 65% and the overall capital cost ($/kW) by about 35%.


Author(s):  
James DiCampli

Combined heat and power (CHP) is an application that utilizes the exhaust heat generated from a gas turbine and converts it into a useful energy source for heating & cooling, or additional electric generation in combined cycle configurations. Compared to simple-cycle plants with no heat recovery, CHP plants emit fewer greenhouse gasses and other emissions, while generating significantly more useful energy per unit of fuel consumed. Clean plants are easier to permit, build and operate. Because of these advantages, projections show CHP capacity is expected to double and account for 24% of global electricity production by 2030. An aeroderivative power plant has distinct advantages to meet CHP needs. These include high thermal efficiency, low cost, easy installation, proven reliability, compact design for urban areas, simple operation and maintenance, fuel flexibility, and full power generation in a very short time period. There has been extensive discussion and analyses on modifying purge requirements on cycling units for faster dispatch. The National Fire Protection Association (NFPA) has required an air purge of downstream systems prior to startup to preclude potentially flammable or explosive conditions. The auto ignition temperature of natural gas fuel is around 800°F. Experience has shown that if the exhaust duct contains sufficient concentrations of captured gas fuel, and is not purged, it can ignite immediately during light off causing extensive damage to downstream equipment. The NFPA Boiler and Combustion Systems Hazards Code Committee have developed new procedures to safely provide for a fast-start capability. The change in the code was issued in the 2011 Edition of NFPA 85 and titled the Combustion Turbine Purge Credit. For a cycling plant and hot start conditions, implementation of purge credit can reduce normal start-to-load by 15–30 minutes. Part of the time saving is the reduction of the purge time itself, and the rest is faster ramp rates due to a higher initial temperature and pressure in the heat recovery steam generator (HRSG). This paper details the technical analysis and implementation of the NFPA purge credit recommendations on GE Power and Water aeroderivative gas turbines. This includes the hardware changes, triple block and double vent valve system (or drain for liquid fuels), and software changes that include monitoring and alarms managed by the control system.


Author(s):  
Kazuhiko Tanimura ◽  
Naoki Murakami ◽  
Akinori Matsuoka ◽  
Katsuhiko Ishida ◽  
Hiroshi Kato ◽  
...  

The M7A-03 gas turbine, an 8 MW class, single shaft gas turbine, is the latest model of the Kawasaki M7A series. Because of the high thermal efficiency and the high exhaust gas temperature, it is particularly suitable for distributed power generation, cogeneration and combined-cycle applications. About the development of M7A-03 gas turbine, Kawasaki has taken the experience of the existing M7A-01 and M7A-02 series into consideration, as a baseline. Furthermore, the latest technology of aerodynamics and cooling design, already applied to the 18 MW class Kawasaki L20A, released in 2000, has been applied to the M7A-03. Kawasaki has adopted the design concept for achieving reliability within the shortest possible development period by selecting the same fundamental engine specifications of the existing M7A-02 – mass air flow rate, pressure ratio, TIT, etc. However, the M7A-03 has been attaining a thermal efficiency of greater than 2.5 points higher and an output increment of over 660 kW than the M7A-02, by the improvement in aerodynamic performance of the compressor, turbine and exhaust diffuser, improved turbine cooling, and newer seal technology. In addition, the NOx emission of the combustor is low and the M7A-03 has a long service life. These functions make long-term continuous operation possible under various environmental restraints. Lower life cycle costs are achieved by the engine high performance, and the high-reliability resulting from simple structure. The prototype M7A-03 gas-turbine development test started in the spring of 2006 and it has been confirmed that performance, mechanical characteristics, and emissions have achieved the initial design goals.


2011 ◽  
Vol 71-78 ◽  
pp. 1765-1768
Author(s):  
Hong Mei Zhu ◽  
Heng Sun ◽  
Tian Quan Pan

A theoretical study of the performance of a CCHP system using natural gas as fuel which consists of gas turbine-steam turbine combined cycle, absorption refrigeration unit and exhaust heat boiler under variable loads was carried out. Two methods to adjust the electric and cooling loads are employed here. One method is to increase the outlet pressure of the steam turbine in the Rankine cycle. Another way is to change the air coefficient of the gas turbine. The calculation results show that the first method can obtain higher energy efficient and is the preferred method. The second way can be employed in case that further more cooling is required.


Author(s):  
James DiCampli

Combined heat and power (CHP), is an application that utilizes the exhaust heat generated from a gas turbine and converts it into a useful energy source for heating & cooling, or additional electric generation in combined cycle configurations. Compared to simple-cycle plants with no heat recovery, CHP plants emit fewer greenhouse gasses and other emissions, while generating significantly more useful energy per unit of fuel consumed. Clean plants are easier to permit, build and operate. Because of these advantages, Aeroderivative gas turbines will be a major part of global CHP growth, particularly in China. In order to improve energy efficiency and reduce CO2 emissions, China is working to build ∼1000 new plants of Natural Gas Distributed Energy System (NG-DES) in the next five years. These plants will replace conventional coal-fired plants with combined cooling, heating and power (CCHP) systems. China power segments require an extensive steam supply for cooling, heating and industrial process steam demands, as well as higher peak loads due to high population densities and manufacturing growth rates. GE Energy Aero recently entered the CCHP segment in China, and supported the promotion of codes and standards for NG-DES policy, and is developing optimized CCHP gas turbine packages to meet requirements. This paper reviews those policies and requirements, and presents technical case studies on CCHP applications. Appendix B highlights China’s draft “Guidance Opinions on Developing Natural-Gas Distributed Energy.”


Author(s):  
Erwin Zauner ◽  
Yau-Pin Chyou ◽  
Frederic Walraven ◽  
Rolf Althaus

Power generation in gas turbines is facing three main challenges today: • Low pollution prescribed by legal requirements. • High efficiency to obtain low operating cost and low CO2 emissions. • High specific power output to obtain low product and installation cost. Unfortunately, some of these requirements are contradictory: high efficiency and specific power force the development towards higher temperatures and pressures which increase NOx emissions and intensify the cooling and material strength problems. A breakthrough can be achieved by applying an energy exchanger as a topping stage. Inherent advantages are the self-cooled cell-rotor which can be exposed to much higher gas temperature than a steady-flow turbine and a very short residence time at peak temperature which keeps NOx emissions under control. The basic idea has been proposed long time ago. Fundamental research has now led to a new energy exchanger concept. Key issues include symmetric pressure-wave processes, partial suppression of flow separation and fluid mixing, as well as quick afterburning in premixed mode. The concept has been proven in a laboratory-scale engine with very promising results. The application of an energy exchanger as a topping stage onto existing gas turbines would increase the efficiency by 17% (relative) and the power by 25%. Since the temperature level in the turbine remains unchanged, the performance improvement can also be fully utilized in combined cycle applications. This process indicates great potentials for developing advanced gas turbine systems as well as for retrofitting existing ones.


Author(s):  
J. H. Moore

Combined-cycle power plants have been built with the gas turbine, steam turbine, and generator connected end-to-end to form a machine having a single shaft. To date, these plants have utilized a nonreheat steam cycle and a single-casing steam turbine of conventional design, connected to the collector end of the generator through a flexible shaft coupling. A new design has been developed for application of an advanced gas turbine of higher rating and higher firing temperature and exhaust gas temperature with a reheat steam cycle. The gas turbine and steam turbine are fully integrated mechanically, with solid shaft couplings and a common thrust bearing. This paper describes the new machine, with emphasis on the steam turbine section where the elimination of the flexible coupling created a number of unusual design requirements. Significant benefits in reduced cost and reduced complexity of design, operation, and maintenance are achieved as a result of the integration of the machine and its control and auxiliary systems.


Author(s):  
Bouria Faqihi ◽  
Fadi A. Ghaith

Abstract In the Gulf Cooperation Council region, approximately 70% of the thermal power plants are in a simple cycle configuration while only 30% are in combined cycle. This high simple to combined cycle ratio makes it of a particular interest for original equipment manufacturers to offer exhaust heat recovery upgrades to enhance the thermal efficiency of simple cycle power plants. This paper aims to evaluate the potential of incorporating costly-effective new developed heat recovery methods, rather than the complex products which are commonly available in the market, with relevant high cost such as heat recovery steam generators. In this work, the utilization of extracted heat was categorized into three implementation zones: use within the gas turbine flange-to-flange section, auxiliary systems and outside the gas turbine system in the power plant. A new methodology was established to enable qualitative and comparative analyses of the system performance of two heat extraction inventions according to the criteria of effectiveness, safety and risk and the pressure drop in the exhaust. Based on the conducted analyses, an integrated heat recovery system was proposed. The new system incorporates a circular duct heat exchanger to extract the heat from the exhaust stack and deliver the intermediary heat transfer fluid to a separate fuel gas exchanger. This system showed superiority in improving the thermodynamic cycle efficiency, while mitigating safety risks and avoiding undesired exhaust system pressure drop.


Sign in / Sign up

Export Citation Format

Share Document