scholarly journals Solid Biomass to Medium CV Gas Conversion With Rich Combustion

Author(s):  
Gordon E. Andrews ◽  
Aysha Irshad ◽  
Herodotus N. Phylaktou ◽  
Bernard M. Gibbs

Abstract A modified cone calorimeter for controlled atmosphere combustion was used to investigate the gases released from fixed bed rich combustion of solid biomass. The cone calorimeter was used with 50 kW/m2 of radiant heat that simulated a larger gasification system. The test specimen in the cone calorimeter is 100mm square and this sits on a load cell so that the mass burn rate can be determined. Pine wood was burned with fixed air ventilation that created rich combustion at 1.5–4 equivalence ratio, Ø. The raw exhaust gas was sampled using a multi-hole gas sample probe in a discharge chimney above the cone heater, connected via heated sample lines, filters and pumps to the heated Gasmet FTIR. The FTIR was calibrated for 60 species, including 40+ hydrocarbons. The hydrogen in the gas was computed from the measured CO concentration using the water-gas shift reaction. The exhaust gas temperature was also measured so that the sensible heat from the gasification zone was included in the energy balance. The GCV of the pine was 18.8 MJ/kgpine and at the optimum Ø the energy in the rich combustion zone gases was 14.5 MJ/kgpine, which is a 77% energy conversion from solid biomass to a gaseous fuel feed for potential gas turbine applications. This conversion efficiency is comparable with the best conventional gasification of biomass and higher than most published conversion efficiencies for coal gasifiers. Of the energy in the gas from the rich combustion 35% was from the CO, 20% from hydrogen, 35% from hydrocarbons and 10% sensible heat. Ash remained in the rich burning gasification zone. As the biomass is a carbon neutral fuel there is no need to convert the gasified gases to hydrogen, with the associated energy losses.

2014 ◽  
Vol 875-877 ◽  
pp. 1291-1299 ◽  
Author(s):  
Wijesinghe Kaluarachchige Hiromi Ariyaratne ◽  
Edirisinghe Vidana Pathiranage Jagath Manjula ◽  
Morten Christian Melaaen ◽  
Lars André Tokheim

Increased use of alternative fuels in cement kilns is a trend in the world. However, replacing fossil fuels like coal with different alternative fuels will give various impacts on the overall kiln process due to the fuel characteristics. Hence, it is important to know to what extent the fossil fuels can be replaced by different alternative fuels without severely changing process conditions, product quality or emissions. In the present study, a mass and energy balance for the combustion of different alternative fuels in a cement rotary kiln was developed. First, the impact of different fuel characteristics on kiln gas temperature, kiln gas flow rate and air requirement were observed by using coal (reference case), meat and bone meal (MBM), two different wood types, refuse derived fuel and a mixture of saw dust and solid hazardous waste as the primary fuel. It was found that the key process parameters depend largely on the chemical characteristics of the fuel. It appears that MBM shows quite different results from other alternative fuels investigated. Next, simulation of combustion of a mixture of coal and MBM in the main burner was carried out in three steps. The first step was combustion of replacing part of coal energy with MBM, and a reduction in kiln exhaust gas temperature compared to the coal reference case was found. In the second step, the fuel feed rate was increased in order to raise the kiln gas temperature to that of the reference case. In the third step, the fuel feed rate and the clinker production rate were changed in order to have not only the same kiln gas temperature but also to obtain the same volumetric flow rate of total exhaust gas from the precalciner as in the reference case. Around 7% of reduction in clinker production rate could be observed when replacing 48% of the coal energy input. Results from a full-scale test using the same mixture of coal and MBM verified the simulation results.


2020 ◽  
Vol 14 (4) ◽  
pp. 7481-7497
Author(s):  
Yousef Najjar ◽  
Abdelrahman Irbai

This work covers waste energy utilization of the combined power cycle by using it in the candle raw material (paraffin) melting process and an economic study for this process. After a partial utilization of the burned fuel energy in a real bottoming steam power generation, the exhaust gas contains 0.033 of the initially burned energy. This tail energy with about 128 ºC is partly driven in the heat exchanger of the paraffin melting system. Ansys-Fluent Software was used to study the paraffin wax melting process by using a layered system that utilizes an increased interface area between the heat transfer fluid (HTF) and the phase change material (PCM) to improve the paraffin melting process. The results indicate that using 47.35 kg/s, which is 5% of the entire exhaust gas (881.33 kg/s) from the exit of the combined power cycle, would be enough for producing 1100 tons per month, which corresponds to the production quantity by real candle's factories. Also, 63% of the LPG cost will be saved, and the payback period of the melting system is 2.4 years. Moreover, as the exhaust gas temperature increases, the consumed power and the payback period will decrease.


2020 ◽  
Vol 38 (5A) ◽  
pp. 779-788
Author(s):  
Marwa N. Kareem ◽  
Adel M. Salih

In this study, the sunflowers oil was utilized as for producing biodiesel via a chemical operation, which is called trans-esterification reaction. Iraqi diesel fuel suffers from high sulfur content, which makes it one of the worst fuels in the world. This study is an attempt to improve the fuel specifications by reducing the sulfur content of the addition of biodiesel fuel to diesel where this fuel is free of sulfur and has a thermal energy that approaches to diesel.20%, 30% and 50% of Biodiesel fuel were added to the conventional diesel. Performance tests and pollutants of a four-stroke single-cylinder diesel engine were performed. The results indicated that the brake thermal efficiency a decreased by (4%, 16%, and 22%) for the B20, B30 and B50, respectively. The increase in specific fuel consumption was (60%, 33%, and 11%) for the B50, B30, and B20 fuels, respectively for the used fuel blends compared to neat diesel fuel. The engine exhaust gas emissions measures manifested a decreased of CO and HC were CO decreased by (13%), (39%) and (52%), and the HC emissions were lower by (6.3%), (32%), and (46%) for B20, B30 and B50 respectively, compared to diesel fuel. The reduction of exhaust gas temperature was (7%), (14%), and (32%) for B20, B30 and B50 respectively. The NOx emission increased with the increase in biodiesel blends ratio. For B50, the raise was (29.5%) in comparison with diesel fuel while for B30 and B20, the raise in the emissions of NOx was (18%) and...


2020 ◽  
pp. 431-434
Author(s):  
Oliver Arndt

This paper deals with the conversion of coke fired lime kilns to gas and the conclusions drawn from the completed projects. The paper presents (1) the decision process associated with the adoption of the new technology, (2) the necessary steps of the conversion, (3) the experiences and issues which occurred during the first campaign, (4) the impacts on the beet sugar factory (i.e. on the CO2 balance and exhaust gas temperature), (5) the long term impressions and capabilities of several campaigns of operation, (6) the details of available technologies and (7) additional benefits that would justify a conversion from coke to natural gas operation on existing lime kilns. (8) Forecast view to develop systems usable for alternative gaseous fuels (e.g. biogas).


2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


2012 ◽  
Vol 622-623 ◽  
pp. 1162-1167
Author(s):  
Han Fei Tuo

In this study, energetic based fluid selection for a solid oxide fuel cell-organic rankine combined power system is investigated. 9 dry organic fluids with varied critical temperatures are chosen and their corresponding ORC cycle performances are evaluated at different turbine inlet temperatures and exhaust gas temperature (waste heat source) from the upper cycle. It is found that actual ORC cycle efficiency for each fluid strongly depends on the waste heat recovery performance of the heat recovery vapor generator. Exhaust gas temperature determines the optimal fluid which yields the highest efficiency.


Author(s):  
S. Mohammad Javadi ◽  
Pourya Nikoueeyan ◽  
Mohammad Moghiman ◽  
M. Ebrahim Feyz

The enhancement of the flame radiation in gas fueled burners not only improves the thermal efficiency, but also can suppress the rate of NO emission due to reducing the flame temperature. In this experimental investigation, the effect of inlet gas temperature on the flame radiation intensity and the rate of NO formation are studied. To serve this aim, with increasing the temperature of inlet methane to the burner up to 310°C, the variations of CO and NO level in exhaust gases and also the exhaust gas temperature are recorded by gas analyzer device. In each case, the flame radiation intensity was also measured by a photovoltaic module. The results revealed that by increasing the inlet gas temperature up to 250°C, the NO concentration and the exhaust gases temperature are raising. But when the inlet gas temperature exceeds from 250°C and reaches to 310°C, the flame luminosity gradually increases which results in 70 percent growth in flame radiation and 10 percent drop in exhaust gas temperature. The results of the preheating of inlet air also show the same behavior.


Author(s):  
Mehrzad Kaiadi ◽  
Per Tunestal ◽  
Bengt Johansson

High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition Natural Gas engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Most of the heavy duty NG engines are diesel engines which are converted for SI operation. These engine’s components are in common with the diesel-engine which put limits on higher exhaust gas temperature. The engines have lower maximum load level than the corresponding diesel engines. This is mainly due to the lower density of NG, lower compression ratio and limits on knocking and also high exhaust gas temperature. They also have lower efficiency due to mainly the lower compression ratio and the throttling losses. However performing some modifications on the engines such as redesigning the engine’s piston in a way to achieve higher compression ratio and more turbulence, modifying EGR system and optimizing the turbocharging system will result in improving the overall efficiency and the maximum load limit of the engine. This paper presents the detailed information about the engine modifications which result in improving the overall efficiency and extending the maximum load of the engine. Control-related problems associated with the higher loads are also identified and appropriate solutions are suggested.


2020 ◽  
Vol 42 (11) ◽  
pp. 580-591
Author(s):  
Jae-Ram Park ◽  
Dong-Hoon Lee ◽  
Kyung-Hyun Kim

Objectives : The effects of temperatures of supplied air and exhaust gas on moisture removal in the bio-drying process of sewage sludge were assessed by simulating the process. We also suggested performance and efficiency indicators for moisture removal in this process and identified their effectivity.Methods : The bio-drying process of sewage sludge was simulated by mathematical modeling of heat and mass balance under different combinations of supplied-air temperatures and control ranges of exhaust gas temperatures. The simulation results were analyzed by using some indicators for assessing the performance and efficiency of moisture removal.Results and Discussion : While BVS (biodegradable volatile solid) degradation was inhibited at a higher supplied-air temperature and a lower control range of exhaust gas temperature, moisture reduction was enhanced at the supplied-air temperature nearer to ambient and the controlled exhaust gas temperature for 45 to 50℃. The drying performance could be improved by the utilization of both metabolic heat and convective heat from hot supplied-air for the source of heat necessary for moisture removal. We suggested the moisture removal rate as a performance indicator, and both the moisture removing capacity of supplied-air and the mass ratio of moisture removal to BVS degradation as an efficiency indicator. We identified that this mass ratio could be an alternative for thermal efficiency of drying.Conclusions : It is effective to control the air-flow rate to keep the exhaust gas temperature within 45~50℃ during bio-drying of sewage sludge in terms of drying performance and efficiency. It is expected that a specified range or minimum required value for the performance and efficiency indicators in the bio-drying process which suggested in this study needs to be established.


Sign in / Sign up

Export Citation Format

Share Document