Novel Method to Predict Non-Measured Parameters of Industrial Gas Turbines Using Kalman Filter Technique

Author(s):  
Jae Hong Lee ◽  
Tong Seop Kim ◽  
Do Won Kang ◽  
Jeong Lak Sohn ◽  
Jung Ho Lee

Abstract Gas turbines are most widely used for power generation and operate under various conditions and loads. Gas turbine control is important to cope with various situations, and the turbine inlet temperature (TIT) is the most important parameter because it is directly related to the power output and life cycle of the turbine. Thus, precise prediction and control of the TIT are important in terms of the stable operation and life cycle management of gas turbines. This paper proposes a new method to predict non-measured parameters such as the air flow and TIT using Kalman filter techniques. The Kalman filter is widely used for estimating the instantaneous state of a system and can estimate non-measured parameters. The Kalman filter algorithm was implemented in a gas turbine analysis program using MATLAB. The reliability of the new method was verified through various case studies using virtual data and real operating data. The results were compared with those of a model-based gas turbine diagnostics program. The computing time of the Kalman filter and model-based diagnostics program were also compared to confirm the capability of the new method. The results indicate that the new method is more suitable for diagnostics and monitoring applications than the model-based analysis program. Finally, two case studies were performed to confirm the feasibility of the new method using two virtual datasets. The results confirm that the Kalman filter can predict the non-measured parameters precisely.

Author(s):  
Sepehr Sanaye ◽  
Salahadin Hosseini

A novel procedure for finding the optimum values of design parameters of industrial twin-shaft gas turbines at various ambient temperatures is presented here. This paper focuses on being off design due to various ambient temperatures. The gas turbine modeling is performed by applying compressor and turbine characteristic maps and using thermodynamic matching method. The gas turbine power output is selected as an objective function in optimization procedure with genetic algorithm. Design parameters are compressor inlet guide vane angle, turbine exit temperature, and power turbine inlet nozzle guide vane angle. The novel constrains in optimization are compressor surge margin and turbine blade life cycle. A trained neural network is used for life cycle estimation of high pressure (gas generator) turbine blades. Results for optimum values for nozzle guide vane/inlet guide vane (23°/27°–27°/6°) in ambient temperature range of 25–45 ℃ provided higher net power output (3–4.3%) and more secured compressor surge margin in comparison with that for gas turbines control by turbine exit temperature. Gas turbines thermal efficiency also increased from 0.09 to 0.34% (while the gas generator turbine first rotor blade creep life cycle was kept almost constant about 40,000 h). Meanwhile, the averaged values for turbine exit temperature/turbine inlet temperature changed from 831.2/1475 to 823/1471°K, respectively, which shows about 1% decrease in turbine exit temperature and 0.3% decrease in turbine inlet temperature.


Author(s):  
Zhitao Wang ◽  
Junxin Zhang ◽  
Wanling Qi ◽  
Shuying Li

Abstract Marine gas turbines have been widely used and developed in the field of marine power. It is important to make them operated safely and efficiently. In this paper, a marine triaxial gas turbine is taken as an example to study the method of estimating the health state of the gas path using extended Kalman filter (EKF). To verify the accuracy of EKF, a comparison was made between linearized Kalman filtering (LKF) and EKF. In addition, the sequential quadratic programming (SQP) algorithm is used to seek the performance in case of gas path abnormal. The combination of parameter estimation and performance seeking forms a comprehensive method for diagnosis and optimization of marine gas turbines. The results show that the EKF method is an effective method for combining nonlinear systems with traditional Kalman filter. EKF has a good estimation effect on the gas path health state under different operating conditions. Also, the marine triaxial gas turbine achieved the target performance under the constraints of the SQP algorithm. Performance seeking restores the output power of the marine gas turbine and reduces the inlet and outlet temperatures of turbines. It can effectively prevent the problem of excessive combustion and ensure the safe and stable operation of the marine gas turbine.


Author(s):  
Ashley P. Wiese ◽  
Matthew J. Blom ◽  
Michael J. Brear ◽  
Chris Manzie ◽  
Anthony Kitchener

This paper presents a model based, off-line method for analysing the performance of individual components in an operating gas turbine. As with other studies, a least squares approach is employed. The component models are physics-based where possible. In its most general form, the method permits simultaneous inference of the combustor efficiency and stagnation pressure loss, the hot-end heat losses and associated heat transfer coefficients, the turbine inlet temperature and the turbine’s isentropic efficiency. As part of this, combustion of unburnt fuel within the turbine is modelled. The method is demonstrated on a so-called ‘Gas Turbine Air Compressor (GTAC)’ test rig built by the group, a micro-turbine whose compressor supplies air for both the cycle and external applications, but produces no shaft work. The method is also formulated for other gas turbines. The highest order models are tested first, and then the model order is progressively reduced to determine adequate component model complexity. Since the GTAC is a micro-gas turbine, heat losses are found to be significant. It is also shown that care must be taken to distinguish between variations in the performance of different components, since the performance of several components can have similar effects on the complete, operating device.


Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


Author(s):  
Matti Malkamäki ◽  
Ahti Jaatinen-Värri ◽  
Antti Uusitalo ◽  
Aki Grönman ◽  
Juha Honkatukia ◽  
...  

Decentralized electricity and heat production is a rising trend in small-scale industry. There is a tendency towards more distributed power generation. The decentralized power generation is also pushed forward by the policymakers. Reciprocating engines and gas turbines have an essential role in the global decentralized energy markets and improvements in their electrical efficiency have a substantial impact from the environmental and economic viewpoints. This paper introduces an intercooled and recuperated three stage, three-shaft gas turbine concept in 850 kW electric output range. The gas turbine is optimized for a realistic combination of the turbomachinery efficiencies, the turbine inlet temperature, the compressor specific speeds, the recuperation rate and the pressure ratio. The new gas turbine design is a natural development of the earlier two-spool gas turbine construction and it competes with the efficiencies achieved both with similar size reciprocating engines and large industrial gas turbines used in heat and power generation all over the world and manufactured in large production series. This paper presents a small-scale gas turbine process, which has a simulated electrical efficiency of 48% as well as thermal efficiency of 51% and can compete with reciprocating engines in terms of electrical efficiency at nominal and partial load conditions.


Author(s):  
Wyatt Culler ◽  
Janith Samarasinghe ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca ◽  
Jacqueline O’Connor

Combustion instability in gas turbines can be mitigated using active techniques or passive techniques, but passive techniques are almost exclusively used in industrial settings. While fuel staging, a common passive technique, is effective in reducing the amplitude of self-excited instabilities in gas turbine combustors at steady-state conditions, the effect of transients in fuel staging on self-excited instabilities is not well understood. This paper examines the effect of fuel staging transients on a laboratory-scale five-nozzle can combustor undergoing self-excited instabilities. The five nozzles are arranged in a four-around-one configuration and fuel staging is accomplished by increasing the center nozzle equivalence ratio. When the global equivalence ratio is φ = 0.70 and all nozzles are fueled equally, the combustor undergoes self-excited oscillations. These oscillations are suppressed when the center nozzle equivalence ratio is increased to φ = 0.80 or φ = 0.85. Two transient staging schedules are used, resulting in transitions from unstable to stable operation, and vice-versa. It is found that the characteristic instability decay times are dependent on the amount of fuel staging in the center nozzle. It is also found that the decay time constants differ from the growth time constants, indicating hysteresis in stability transition points. High speed CH* chemiluminescence images in combination with dynamic pressure measurements are used to determine the instantaneous phase difference between the heat release rate fluctuation and the combustor pressure fluctuation throughout the combustor. This analysis shows that the instability onset process is different from the instability decay process.


Author(s):  
Daniel E. Caguiat

The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had a non-coated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and non-coated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the non-coated compressor. Overall test results show that it is feasible to utilize anti-fouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.


Author(s):  
Timothy C. Allison ◽  
Harold R. Simmons

Least squares balancing methods have been applied for many years to reduce vibration levels of turbomachinery. This approach yields an optimal configuration of balancing weights to reduce a given cost function. However, in many situations, the cost function is not well-defined by the problem, and a more interactive method of determining the effects of balance weight placement is desirable. An interactive balancing procedure is outlined and implemented in an Excel spreadsheet. The usefulness of this interactive approach is highlighted in balancing case studies of a GE LM5000 gas turbine and an industrial fan. In each case study, attention is given to practical aspects of balancing such as sensor placement and balancing limitations.


2021 ◽  
Author(s):  
Takashi Nishiumi ◽  
Hirofumi Ohara ◽  
Kotaro Miyauchi ◽  
Sosuke Nakamura ◽  
Toshishige Ai ◽  
...  

Abstract In recent years, MHPS achieved a NET M501J gas turbine combined cycle (GTCC) efficiency in excess of 62% operating at 1,600°C, while maintaining NOx under 25ppm. Taking advantage of our gas turbine combustion design, development and operational experience, retrofits of earlier generation gas turbines have been successfully applied and will be described in this paper. One example of the latest J-Series technologies, a conventional pilot nozzle was changed to a premix type pilot nozzle for low emission. The technology was retrofitted to the existing F-Series gas turbines, which resulted in emission rates of lower than 9ppm NOx(15%O2) while maintaining the same Turbine Inlet Temperature (TIT: Average Gas Temperature at the exit of the transition piece). After performing retrofitting design, high pressure rig tests, the field test prior to commercial operation was conducted on January 2019. This paper describes the Ultra-Low NOx combustor design features, retrofit design, high pressure rig test and verification test results of the upgraded M501F gas turbine. In addition, it describes another upgrade of turbine to improve efficiency and of combustion control system to achieve low emissions. Furthermore it describes the trouble-free upgrade of seven (7) units, which was completed by utilizing MHPS integration capabilities, including handling all the design, construction and service work of the main equipment, plant and control systems.


Author(s):  
Takayuki Matsunuma ◽  
Hiro Yoshida ◽  
Norihiko Iki ◽  
Takumi Ebara ◽  
Satoshi Sodeoka ◽  
...  

A series of operation tests of a ceramic micro gas turbine has been successfully carried out. The baseline machine is a small single-shaft turbojet engine (J-850, Sophia Precision Corp.) with a centrifugal compressor, an annular type combustor, and a radial turbine. As a first step, an Inconel 713C alloy turbine rotor of 55 mm in diameter was replaced with a ceramic rotor (SN-235, Kyocera Corporation). A running test was conducted at rotational speeds of up to 140,000 rpm in atmospheric air. At this rotor speed, the compression pressure ratio and the thrust were 3 and 100 N, respectively. The total energy level (enthalpy and kinetic energy) of the exhaust gas jet was 240 kW. If, for example, it is assumed that 10% of the total power of the exhaust jet gas was converted into electricity, the present system would correspond to a generator with 24 kW output power. The measured turbine outlet temperature was 950°C (1,740°F) and the turbine inlet temperature was estimated to be 1,280°C (2,340°F). Although the ceramic rotor showed no evidence of degradation, the Inconel nozzle immediately in front of the turbine rotor partially melted in this rotor condition. As a second step, the Inconel turbine nozzle and casing were replaced with ceramic parts (SN-01, Ohtsuka Ceramics Inc.). The ceramic nozzle and case were supported by metal parts. Through tests with the ceramic nozzle, it became evident that one of the key technologies for the development of ceramic gas turbines is the design of the interface between the ceramic components and the metallic components, because the difference between the coefficients of linear thermal expansion of the ceramic and metal produces large thermal stress at their interface in the high-temperature condition. A buffer material made of alumina fiber was therefore introduced at the interface between the ceramic and metal.


Sign in / Sign up

Export Citation Format

Share Document