Influence of Inlet Distortions on the Forced Vibration of a High Pressure Compressor Rig

Author(s):  
Falco Franz ◽  
Arnold Kühhorn ◽  
Thomas Giersch ◽  
Felix Figaschewsky ◽  
Sven Schrape

Abstract This paper aims at getting a better understanding of the simulative prediction of low engine order excitations in axial compressors. The focus is on the influence of inlet distortions on the forced response of a 4.5-stage research compressor rig. The papers starts with a brief description of the rig. After that the numerical setups required to conduct aerodynamic damping and forced response analyses are presented. Experimental data obtained during a rig test campaign show a significant response of a fundamental mode of the rotor 2 blisk to a low engine order 4. This resonance is studied throughout the paper. A superposition effect of different low engine order 4 sources was observed when changing the clocking of the inlet distortion. The vibrational amplitudes are computed using a subset of nominal system modes model incorporating a measured mistuning distribution. Measured amplitude versus blade patterns are compared with those computed by the aeromechanical models. The observed superposition effect is a key finding and is leveraged to establish comparability of the results.

2018 ◽  
Vol 2 ◽  
pp. F72OUU
Author(s):  
Victor Bicalho Civinelli de Almeida ◽  
Dieter Peitsch

A numerical aeroelastic assessment of a highly loaded high pressure compressor exposed to flow disturbances is presented in this paper. The disturbances originate from novel, inherently unsteady, pressure gain combustion processes, such as pulse detonation, shockless explosion, wave rotor or piston topping composite cycles. All these arrangements promise to reduce substantially the specific fuel consumption of present-day aeronautical engines and stationary gas turbines. However, their unsteady behavior must be further investigated to ensure the thermodynamic efficiency gain is not hindered by stage performance losses. Furthermore, blade excessive vibration (leading to high cycle fatigue) must be avoided, especially under the additional excitations frequencies from waves traveling upstream of the combustor. Two main numerical analyses are presented, contrasting undisturbed with disturbed operation of a typical industrial core compressor. The first part of the paper evaluates performance parameters for a representative blisk stage with high-accuracy 3D unsteady Reynolds-averaged Navier-Stokes computations. Isentropic efficiency as well as pressure and temperature unsteady damping are determined for a broad range of disturbances. The nonlinear harmonic balance method is used to determine the aerodynamic damping. The second part provides the aeroelastic harmonic forced response of the rotor blades, with aerodynamic damping and forcing obtained from the unsteady calculations in the first part. The influence of blade mode shapes, nodal diameters and forcing frequency matching is also examined.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Benjamin Hanschke ◽  
Arnold Kühhorn ◽  
Sven Schrape ◽  
Thomas Giersch

Objective of this paper is to analyze the consequences of borescope blending repairs on the aeroelastic behavior of a modern high pressure compressor (HPC) blisk. To investigate the blending consequences in terms of aerodynamic damping and forcing changes, a generic blending of a rotor blade is modeled. Steady-state flow parameters like total pressure ratio, polytropic efficiency, and the loss coefficient are compared. Furthermore, aerodynamic damping is computed utilizing the aerodynamic influence coefficient (AIC) approach for both geometries. Results are confirmed by single passage flutter (SPF) simulations for specific interblade phase angles (IBPA) of interest. Finally, a unidirectional forced response analysis for the nominal and the blended rotor is conducted to determine the aerodynamic force exciting the blade motion. The frequency content as well as the forcing amplitudes is obtained from Fourier transformation of the forcing signal. As a result of the present analysis, the change of the blade vibration amplitude is computed.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Majid Mesbah ◽  
Jean-François Thomas ◽  
François Thirifay ◽  
A. Naert ◽  
S. Hiernaux

This study aims to numerically investigate the sensitivity of the forced response with respect to the variation of the tip clearance setting of a low pressure compressor BluM™(monoblock bladed drum) when it is subjected to low engine order excitations. Two different types of blades are employed in the upstream row in order to generate the low engine order excitations. The forced response as well as the aerodynamic damping is numerically estimated using the TWIN approach. The experiments are conducted to measure the forced response for the nominal tip gap to validate the numerical results. Further, simulations are performed for a range of tip clearances. The variation of the steady load distributions due to the changes of the tip clearance are analyzed and presented. The aerodynamic damping and the forced response are calculated and compared for different tip clearances. It is observed that aerodynamic damping increases significantly with tip gap, whereas the excitation forces are reduced. As consequence of these two evolutions, the forced response decreases drastically for larger tip clearance.


Author(s):  
Alain Batailly ◽  
Mathias Legrand ◽  
Antoine Millecamps ◽  
Sèbastien Cochon ◽  
François Garcin

Recent numerical developments dedicated to the simulation of rotor/stator interaction involving direct structural contacts have been integrated within the Snecma industrial environment. This paper presents the first attempt to benefit from these developments and account for structural blade/casing contacts at the design stage of a high-pressure compressor blade. The blade of interest underwent structural divergence after blade/abradable coating contact occurrences on a rig test. The design improvements were carried out in several steps with significant modifications of the blade stacking law while maintaining aerodynamic performance of the original blade design. After a brief presentation of the proposed design strategy, basic concepts associated with the design variations are recalled. The iterated profiles are then numerically investigated and compared with respect to key structural criteria such as: (1) their mass, (2) the residual stresses stemming from centrifugal stiffening, (3) the vibratory level under aerodynamic forced response and (4) the vibratory levels when unilateral contact occurs. Significant improvements of the final blade design are found: the need for an early integration of nonlinear structural interactions criteria in the design stage of modern aircraft engines components is highlighted.


Author(s):  
Bernd Beirow ◽  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Alfons Bornhorn

The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated.


Author(s):  
A. Grimaldi ◽  
V. Michelassi

This paper discusses the impact of inlet flow distortions on centrifugal compressors based upon a large experimental data base in which the performance of several impellers in a range of corrected flows and corrected speeds have been measured after been coupled with different inlet plenums technologies. The analysis extends to centrifugal compressor inlets including a side stream, typical of liquefied natural gas applications. The detailed measurements allow a thorough characterization of the flow field and associated performance. The results suggest that distortions can alter the head by as much as 3% and efficiency of around 1%. A theoretical analysis allowed to identify the design features that are responsible for this deviation. In particular, an extension of the so-called “reduced-frequency,” a coefficient routinely used in axial compressors and turbine aerodynamics to weigh the unsteadiness generated by upstream to downstream blade rows, allowed to determine a plenum-to-impeller reduced frequency that correlates very well with the measured performance. The theory behind the new coefficient is discussed together with the measurement details and validates the correlation that can be used in the design phase to determine the best compromise between the inlet plenum complexity and impact on the first stage.


Author(s):  
Bernd Beirow ◽  
Arnold Kühhorn ◽  
Felix Figaschewsky ◽  
Jens Nipkau

The forced response of an E3E-type high pressure compressor blisk front rotor is analyzed with regard to intentional mistuning and its robustness towards additional random mistuning. Both a chosen alternating mistuning pattern and artificial mistuning patterns optimized concerning the forced response are considered. Focusing on three different blade modes, subset of nominal system mode-based reduced order models are employed to compute the forced response. The disk remains unchanged while the Young’s modulus of each blade is used to define the particular mistuning pattern. The well established aerodynamic influence coefficient technique is employed to model aeroelastic coupling and hence to consider the strongly mode- and inter blade phase angle-dependent aerodynamic damping contribution. It has been found that a reduction of the maximum forced response beyond that of the tuned reference can be achieved for particular mistuning patterns and all modes considered. This implies an exciting engine order which would cause a low nodal diameter mode in case of a tuned blisk. At best a nearly 50% reduction of maximum response magnitudes is computed for the fundamental bending mode and large mistuning. The solution proved to be robust towards additional random mistuning of reasonable magnitude, which is of particular interest with regard to a potential technical realization. In case of small mistuning as assumed for the first torsion and the longitudinal bending mode the advantage of achieving response magnitudes beyond the tuned reference gets lost indeed, if random mistuning is superimposed. However, mostly a lower response level is calculated compared to responses obtained from models adjusted to mistuning determined by experiment.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Swati Saxena ◽  
Giridhar Jothiprasad ◽  
Corey Bourassa ◽  
Byron Pritchard

Aircraft engines ingest airborne particulate matter, such as sand, dirt, and volcanic ash, into their core. The ingested particulate is transported by the secondary flow circuits via compressor bleeds to the high pressure turbine and may deposit resulting in turbine fouling and loss of cooling effectiveness. Prior publications focused on particulate deposition and sand erosion patterns in a single stage of a compressor or turbine. This work addresses the migration of ingested particulate through the high pressure compressor (HPC) and bleed systems. This paper describes a 3D CFD methodology for tracking particles along a multistage axial compressor and presents particulate ingestion analysis for a high pressure compressor section. The commercial CFD multiphase solver ANSYS CFX® has been used for flow and particulate simulations. Particle diameters of 20, 40, and 60 μm are analyzed. Particle trajectories and radial particulate profiles are compared for these particle diameters. The analysis demonstrates how the compressor centrifuges the particles radially toward the compressor case as they travel through the compressor; the larger diameter particles being more significantly affected. Nonspherical particles experience more drag as compared to spherical particles, and hence a qualitative comparison between spherical and nonspherical particles is shown.


Author(s):  
Bernd Beirow ◽  
Arnold Kühhorn ◽  
Thomas Giersch ◽  
Jens Nipkau

The forced response of the first rotor of an E3E-type high pressure compressor blisk is analyzed with regard to varying mistuning, varying engine order excitations and the consideration of aeroelastic effects. For that purpose, SNM-based reduced order models are used in which the disk remains unchanged while the Young’s modulus of each blade is used to define experimentally adjusted as well as intentional mistuning patterns. The aerodynamic influence coefficient technique is employed to model aeroelastic interactions. Furthermore, based on optimization analyses and depending on the exciting EO and aerodynamic influences it is searched for the worst as well as the best mistuning distributions with respect to the maximum blade displacement. Genetic algorithms using blade stiffness variations as vector of design variables and the maximum blade displacement as objective function are applied. An allowed limit of the blades’ Young’s modulus standard deviation is formulated as secondary condition. In particular, the question is addressed if and how far the aeroelastic impact, mainly causing aerodynamic damping, combined with mistuning can even yield a reduction of the forced response compared to the ideally tuned blisk. It is shown that the strong dependence of the aerodynamic damping on the inter-blade phase angle is the main driver for a possible response attenuation considering the fundamental blade mode. The results of the optimization analyses are compared to the forced response due to real, experimentally determined frequency mistuning as well as intentional mistuning.


2019 ◽  
Vol 123 (1261) ◽  
pp. 356-377
Author(s):  
F. Figaschewsky ◽  
A. Kühhorn ◽  
B. Beirow ◽  
T. Giersch ◽  
S. Schrape

ABSTRACTThis paper aims at contributing to a better understanding of the effect of Tyler–Sofrin Modes (TSMs) on forced vibration responses by analysing a 4.5-stage research axial compressor rig. The first part starts with a brief review of the involved physical mechanisms and necessary prerequisites for the generation of TSMs in multistage engines. This review is supported by unsteady CFD simulations of a quasi 2D section of the studied engine. It is shown that the amplitude increasing effect due to mistuning can be further amplified by the presence of TSMs. Furthermore, the sensitivity with respect to the structural coupling of the blades and the damping as well as the shape of the expected envelope is analysed.The second part deals with the Rotor 2 blisk of the research compressor rig. The resonance of a higher blade mode with the engine order of the upstream stator is studied in two different flow conditions realised by different variable stator vane (VSV) schedules which allows to separate the influence of TSMs from the impact of mistuning. A subset of nominal system modes representation of the rotor is used to describe its mistuned vibration behaviour, and unsteady CFD simulations are used to characterise the present strength of the TSMs in the particular operating conditions. Measured maximum amplitude vs blade pattern and frequency response functions are compared against the predictions of the aeromechanical models in order to assess the strength of the TSMs as well as its influence on vibration levels.


Sign in / Sign up

Export Citation Format

Share Document