Microstructural Evolution Of LPBF AlSiMg – Effect Of Water Quenching Vs Furnace Cooling Vs Direct Aging

2021 ◽  
Author(s):  
Dheepa Srinivasan ◽  
Dayananda Narayana

Abstract The heat treatment response of AlSi10Mg via laser powder bed fusion (LPBF) has been studied via detailed microstructural characterization. The effect of solutioning (S) and water quenching (WQ) vs furnace cooling (FC), and direct aging (DA) vs solutioning and aging (SA), has been analysed, for microstructure and tensile properties. 11 heat treatments were carried out to map the partitioning of Si, starting with stress relieving at 200 °C vs 300 °C, followed by solution heat treatment at 430°C vs 530 °C, water quenching vs furnace cooling, aging at 160 °C vs direct aging at 160 °C, to establish the microstructure of LPBF AlSi10Mg alloys for potential applications. The microstructure at 430 °C and 530 °C shows Si precipitate fractions of 25% and 14%, respectively. Room temperature mechanical properties, revealed the 300 °C, 2 h stress relieved sample with the highest strength and ductility (YS of 230 MPa and 16%). At 430 °C, both water quenching and furnace cooling showed similar strengths and 16% elongation, while at 530 °C, there was a much lower elongation (8–9%) with the T6 (53 °C, WQ, SA) showing higher strength and elongation. This study brings out the importance of being able to choose the heat treatments suitable to AlSiMg part geometry, via LPBF additive manufacturing for various applications.

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6157
Author(s):  
Matteo Vanzetti ◽  
Enrico Virgillito ◽  
Alberta Aversa ◽  
Diego Manfredi ◽  
Federica Bondioli ◽  
...  

Conventionally processed precipitation hardening aluminum alloys are generally treated with T6 heat treatments which are time-consuming and generally optimized for conventionally processed microstructures. Alternatively, parts produced by laser powder bed fusion (L-PBF) are characterized by unique microstructures made of very fine and metastable phases. These peculiar features require specifically optimized heat treatments. This work evaluates the effects of a short T6 heat treatment on L-PBF AlSi7Mg samples. The samples underwent a solution step of 15 min at 540 °C followed by water quenching and subsequently by an artificial aging at 170 °C for 2–8 h. The heat treated samples were characterized from a microstructural and mechanical point of view and compared with both as-built and direct aging (DA) treated samples. The results show that a 15 min solution treatment at 540 °C allows the dissolution of the very fine phases obtained during the L-PBF process; the subsequent heat treatment at 170 °C for 6 h makes it possible to obtain slightly lower tensile properties compared to those of the standard T6. With respect to the DA samples, higher elongation was achieved. These results show that this heat treatment can be of great benefit for the industry.


Author(s):  
Maryline Clerge´ ◽  
Christian Boucher ◽  
Sylvain Pillot ◽  
Philippe Bourges

During manufacturing, complex shape welded pressure vessels are submitted to numerous intermediate heat treatments after each weld (de-hydrogenation treatment - DHT and/or intermediate stress relieving treatment - ISR) before final Post Weld Heat Treatment (PWHT). The present study aims at analysing and optimising the intermediate heat treatment conditions regarding the resulting mechanical properties (tensile strength and impact. strength) of CrMo and CrMoV creep resistant steels. Hydrogen behaviour in weld metal and HAZ, and residual stresses evolution have been assessed by numerical modelling and experimental measurements on welded specimens representative of big pressure vessels: butt welds and set in nozzle welds of 150 mm wall thickness. The optimised conditions are compared to usual construction codes and buyer’s requirements.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Cédric Chauvy ◽  
Lionel Coudreuse ◽  
Patrick Toussaint

During fabrication of Pressure Vessels, steels undergo several heat treatments that aim to confer the required properties on the entire equipment, including welds and base metal. Indeed, the production heat treatment of the base material, which leads to achieve the target properties, is most of the time followed by post weld heat treatment (PWHT). The aim of such treatments is to insure a good behavior of the welded zones in terms of residual stresses and obviously properties such as toughness. Generally, many simulated PWHT (up to 4 or more) are required for the testing of the base material, which can affect its properties and even lead to unacceptable results. In some cases for fabrication purposes an intermediate Stress relieving treatment can be required. Special attention is paid on C-Mn steels (e.g., SA/A516 from ASME BPV Code) with the effect of thickness and Ceq (International Institute of Welding Carbon equivalent formula: see page 3) requirements on the final compromise between properties and heat treatments. In particular, toughness and ultimate tensile strength (UTS) are the critical parameters that will limit the acceptance of too high PWHT. Although micro-alloying is a mean to increase the resistance to PWHT, this leads to difficulties in softening the heat affected zones. This solution is therefore not the best one considering the whole equipment optimization. Finally, the manufacturing process can play a major role when specifications are stringent. Quenching and tempering (Q&T) can indeed provide better flexibility in terms of PWHT and improved toughness for given Ceq and thickness. The case of Cr-Mo(-V) steels, which are widely used in the energy industry, is also addressed. Indeed, PWHT requirements for increasing the toughness in the weld metal can lead to decrease the base metal properties below the specification limits. For example, the case of SA/A387gr11 is very typical of metallurgical changes that can occur during these high PWHT leading to a degradation of toughness in the base metal. Another focus is made on the Vanadium Cr-Mo grade SA/A542D that must withstand very high PWHT (705 °C and even 710 °C) because of welds toughness issues. Optimization has therefore to be done to increase the resistance to softening and to guarantee acceptable microstructure, especially in the case of thick wall vessels. Some ways for improvement are proposed on the basis of the equivalent Larson–Miller parameter (LMP) tempering parameter concept. The basic philosophy is to fulfil the need for discussion between companies involved in pressure vessels fabrication so that the best compromise can be found to ensure the best and safest behavior of the equipment as a whole. In particular, the tempering operation can sometimes be done at lower temperature than PWHT in order to offer the best properties to the final vessel.


1993 ◽  
Vol 322 ◽  
Author(s):  
D.-H. Hou ◽  
H.L. Fraser

AbstractThe effect of cooling rate on the tensile properties of specimens of the Nb-40Ti-15A1 alloy (in at.%) subjected to various heat treatments has been studied. This alloy has the B2 crystal structure and an order-disorder transition temperature between 1020°C and 1100°C. Two heat treatments have been carried out; the first one involves an 1100°C/1hr heat treatment followed by furnace cooling, air cooling or water quenching. The second type of heat treatment involves re-heating the furnace-cooled and water-quenched specimens at 400°C for 10 minutes or 900°C for 30 minutes, followed by either furnace cooling or water quenching. Tensile properties, SEM fractographs and microstructures of these specimens have been assessed. It is shown that specimens furnace-cooled from 1100°C have higher strength and less ductility than the water quenched ones. An observed microstructural feature associated with cooling rates is the difference in anti-phase domain (APD) size. Discussions are focused on possible cooling rate related phenomena that could affect the tensile properties. It is proposed that the degree of long range ordering, not the APD size, is the dominant factor for the observed cooling rate effect on the tensile properties.


Author(s):  
Lavinia Tonelli ◽  
Erica Liverani ◽  
Alessandro Morri ◽  
Lorella Ceschini

AbstractApplying additive manufacturing (AM) technologies to the fabrication of aluminum automotive components, with an optimized design, may result in improved vehicle light weighting. However, the post-process heat treatment of such alloys has to be customized for the particular AM microstructure. The present study is aimed at investigating the effect of different heat treatments on the microstructure, hardness and residual stress of the A357 (AlSi7Mg0.6) heat-treatable alloy produced by laser-based powder bed fusion (LPBF, also known as selective laser melting). There are two major issues to be addressed: (1) relieving the internal residual stress resulting from the process and (2) strengthening the alloy with a customized heat treatment. Therefore, stress-relief annealing treatment, direct aging of the as-built alloy and a redesigned T6 treatment (consisting of a shortened high-temperature solution treatment followed by artificial aging) were examined. Comparable hardness values were reached in the LPBF alloy with optimized direct aging and T6 treatments, but complete relief of the residual stress was obtained only with T6. Microstructural analyses also suggested that, because of the supersaturated solid solution, different phenomena were involved in direct aging and T6 treatment.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4643
Author(s):  
Mathieu Terner ◽  
Jiwon Lee ◽  
Giulio Marchese ◽  
Sara Biamino ◽  
Hyun-Uk Hong

Metal Additive Manufacturing and Laser Powder Bed Fusion (LPBF), in particular, have come forth in recent years as an outstanding innovative manufacturing approach. The LPBF process is notably characterized by very high solidification and cooling rates, as well as repeated abrupt heating and cooling cycles, which generate the build-up of anisotropic microstructure and residual stresses. Post-processing stress-relieving heat treatments at elevated temperatures are often required in order to release some of these stresses. The effects of 1 h–hold heat treatments at different specific temperatures (solutionizing, annealing, stress-relieve and low-temperature stress-relieve) on residual stress levels together with microstructure characterization were therefore investigated for the popular Alloy 625 produced by LPBF. The build-up of residual stress is accommodated by the formation of dislocations that produce local crystallographic misorientation within grains. Electron backscattered diffraction (EBSD) was used to investigate local misorientation by means of orientation imaging, thereby assessing misorientation or strain levels, in turn representing residual stress levels within the material. The heavily constrained as-built material was found to experience full recrystallization of equiaxed grains after solutionizing at 1150 °C, accompanied by significant drop of residual stress levels due to this grains reconfiguration. Heat treatments at lower temperatures however, even as high as the annealing temperature of 980 °C, were found to be insufficient to promote recrystallization though effective to some extent to release residual stress through apparently dislocations recovery. Average misorientation data obtained by EBSD were found valuable to evaluate qualitatively residual stress levels. The effects of the different heat treatments are discussed and suggest that the peculiar microstructure of alloys produced by LPBF can possibly be transformed to suit specific applications.


2021 ◽  
Vol 111 (06) ◽  
pp. 372-377
Author(s):  
Andreas Hofmann ◽  
Alexander Mahr ◽  
Frank Döpper ◽  
Christian Bay

Der hohe lokale Energieeintrag beim pulverbettbasierten Schmelzen mittels Laserstrahl (laser powder bed fusion, LPBF) bewirkt hohe Temperaturgradienten. Dies führt zu thermisch induzierten Eigenspannungen und Verzug in den gefertigten Bauteilen, wodurch deren Form- und Maßhaltigkeit negativ beeinträchtigt wird. In diesem Beitrag wird der Einfluss der Bauteilgeometrie und einer der Fertigung nachgelagerten Wärmebehandlung auf den Verzug von mittels LPBF gefertigten Bauteilen aus dem Werkstoff TiAl6V4 untersucht.   A high local energy input during laser powder bed fusion (LPBF) creates high temperature gradients. This leads to thermally induced residual stresses and distortion, which negatively affect the dimensional accuracy of components. This paperinvestigates the influence of component geometry and heat treatment after the manufacturing process on the distortion of components made by LPBF of TiAl6V4.


Technologies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 48
Author(s):  
Stephan Hafenstein ◽  
Leonhard Hitzler ◽  
Enes Sert ◽  
Andreas Öchsner ◽  
Markus Merkel ◽  
...  

Hot isostatic pressing can be utilized to reduce the anisotropic mechanical properties of Al–Si–Mg alloys fabricated by laser powder-bed fusion (L-PBF). The implementation of post processing densification processes can open up new fields of application by meeting high quality requirements defined by aircraft and automotive industries. A gas pressure of 75 MPa during hot isostatic pressing lowers the critical cooling rate required to achieve a supersaturated solid solution. Direct aging uses this pressure related effect during heat treatment in modern hot isostatic presses, which offer advanced cooling capabilities, thereby avoiding the necessity of a separate solution annealing step for Al–Si–Mg cast alloys. Hot isostatic pressing, followed by rapid quenching, was applied to both sand cast as well as laser powder-bed fused Al–Si–Mg aluminum alloys. It was shown that the critical cooling rate required to achieve a supersaturated solid solution is significantly higher for additively manufactured, age-hardenable aluminum alloys than it is for comparable sand cast material. The application of hot isostatic pressing can be combined with heat treatment, consisting of solution annealing, quenching and direct aging, in order to achieve both a dense material with a small number of preferred locations for the initiation of fatigue cracks and a high material strength.


2019 ◽  
Vol 105 (7-8) ◽  
pp. 2891-2906 ◽  
Author(s):  
H. Wong ◽  
K. Dawson ◽  
G. A. Ravi ◽  
L. Howlett ◽  
R. O. Jones ◽  
...  

Abstract Production rate is an increasingly important factor in the deployment of metal additive manufacturing (AM) throughout industry. To address the perceived low production rate of metal AM systems based on single-laser powder bed fusion (L-PBF), several companies now offer systems in which melting has been parallelised by the introduction of multiple, independently controlled laser beams. Nevertheless, a full set of studies is yet to be conducted to benchmark the efficiency of multi-laser systems and, at the same time, to verify if the mechanical properties of components are compromised due to the increase in build rate. This study addresses the described technology gaps and presents a 4-beam L-PBF system operating in “single multi” (SM) mode (SM-L-PBF) where each of the four lasers is controlled so that it melts all of a particular components’ layers and produces specimens for comparison with standard L-PBF specimens from the same machine. That is all four lasers making all of some of the parts were compared to a single-laser manufacturing all of the parts. Build parameters were kept constant throughout the manufacturing process and the material used was Inconel 625 (IN625). Stress-relieving heat treatment was conducted on As-built (AB) specimens. Both AB and heat-treated (HT) specimen sets were tested for density, microstructure, tensile strength and hardness. Results indicate that the stress-relieving heat treatment increases specimen ductility without compromising other mechanical properties. SM-L-PBF has achieved a build rate of 14 cm3/h when four 200 W lasers were used to process IN625 at a layer thickness of 30 μm. An increase in the build rate of 2.74 times (build time reduction: 63%) has been demonstrated when compared to that of L-PBF, with little to no compromises in specimen mechanical properties. The observed tensile properties exceed the American Society for Testing Materials (ASTM) requirements for IN625 (by a margin of 22 to 26% in the 0.2% offset yield strength). Average specimen hardness and grain size are in the same order as that reported in literatures. The study has demonstrated that a multi-laser AM system opens up opportunities to tackle the impasse of low build rate in L-PBF in an industrial setting and that at least when operating in single mode there is no detectable degradation in the mechanical and crystallographic characteristics of the components produced.


Sign in / Sign up

Export Citation Format

Share Document