Experimental Results for Light-Induced Boiling in Water-Based Graphite Nanoparticle Suspensions

Author(s):  
Robert A. Taylor ◽  
Patrick E. Phelan ◽  
Ronald J. Adrian ◽  
Todd Otanicar ◽  
Ravi S. Prasher

One relatively simple subset of nanotechnology is nanofluids, obtained by the addition of nanoparticles to a conventional base fluid. The promise of nanofluids stems from the fact that at relatively small particle loading (typically <1% by volume) significant enhancement in thermal transport may be possible [1–3]. Since there are a wide variety of nanoparticle materials to choose from, nanofluidic systems can be tuned to fit a number of applications. This research focuses on direct thermal collection of light energy using highly absorptive nanofluids. Experimental tests are conducted using a 0.1% by volume graphite/water (30nm nominal particle diameter) nanofluid exposed to a 130 mW, 532 nm, continuous laser. A lens is placed between the laser and the fluid to achieve a high-energy flux (∼ 490 Wcm−2). Since initially over 99.9% of the light is absorbed in a path length of 0.1 mm, the irradiated portion of the base fluid collects enough energy to vaporize. Heuristic methods of analysis demonstrate this situation incorporates several interesting modes of heat transfer and fluid mechanics. These experiments also reveal the possibility for novel solar collectors in which the working fluid directly absorbs energy and undergoes phase change in a single step.

Author(s):  
Steven Carlip

This work is a short textbook on general relativity and gravitation, aimed at readers with a broad range of interests in physics, from cosmology to gravitational radiation to high energy physics to condensed matter theory. It is an introductory text, but it has also been written as a jumping-off point for readers who plan to study more specialized topics. As a textbook, it is designed to be usable in a one-quarter course (about 25 hours of instruction), and should be suitable for both graduate students and advanced undergraduates. The pedagogical approach is “physics first”: readers move very quickly to the calculation of observational predictions, and only return to the mathematical foundations after the physics is established. The book is mathematically correct—even nonspecialists need to know some differential geometry to be able to read papers—but informal. In addition to the “standard” topics covered by most introductory textbooks, it contains short introductions to more advanced topics: for instance, why field equations are second order, how to treat gravitational energy, what is required for a Hamiltonian formulation of general relativity. A concluding chapter discusses directions for further study, from mathematical relativity to experimental tests to quantum gravity.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2585
Author(s):  
Jessica Guadalupe Tobal-Cupul ◽  
Estela Cerezo-Acevedo ◽  
Yair Yosias Arriola-Gil ◽  
Hector Fernando Gomez-Garcia ◽  
Victor Manuel Romero-Medina

The Mexican Caribbean Sea has potential zones for Ocean Thermal Energy Conversion (OTEC) implementation. Universidad del Caribe and Instituto de Ciencias del Mar y Limnologia, with the support of the Mexican Centre of Innovation in Ocean Energy, designed and constructed a prototype OTEC plant (OTEC-CC-MX-1 kWe), which is the first initiative in Mexico for exploitation of this type of renewable energy. This paper presents a sensitivity analysis whose objective was to know, before carrying out the experimental tests, the behavior of OTEC-CC-MX-1 kWe regarding temperature differences, as well as the non-possible operating conditions, which allows us to assess possible modifications in the prototype installation. An algorithm was developed to obtain the inlet and outlet temperatures of the water and working fluid in the heat exchangers using the monthly surface and deep-water temperature data from the Hybrid Coordinate Ocean Model and Geographically Weighted Regression Temperature Model for the Mexican Caribbean Sea. With these temperatures, the following were analyzed: fluctuation of thermal efficiency, mass flows of R-152a and water and power production. By analyzing the results, we verified maximum and minimum mass flows of water and R-152a to produce 1 kWe during a typical year in the Mexican Caribbean Sea and the conditions when the production of electricity is not possible for OTEC-CC-MX-1 kWe.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 303
Author(s):  
Lingdi Tang ◽  
Shouqi Yuan ◽  
Yue Tang ◽  
Zhijun Gao

The impulse water turbine is a promising energy conversion device that can be used as mechanical power or a micro hydro generator, and its application can effectively ease the current energy crisis. This paper aims to clarify the mechanism of liquid acting on runner blades, the hydraulic performance, and energy conversion characteristics in the runner domain of an impulse water turbine with a splitter blade by using experimental tests and numerical simulations. The runner was divided into seven areas along the flow direction, and the power variation in the runner domain was analyzed to reflect its energy conversion characteristics. The obtained results indicate that the critical area of the runner for doing the work is in the front half of the blades, while the rear area of the blades does relatively little work and even consumes the mechanical energy of the runner to produce negative work. The high energy area is concentrated in the flow passage facing the nozzle. The energy is gradually evenly distributed from the runner inlet to the runner outlet, and the negative energy caused by flow separation with high probability is gradually reduced. The clarification of the energy conversion performance is of great significance to improve the design of impulse water turbines.


1998 ◽  
Vol 555 ◽  
Author(s):  
H. Fritze ◽  
A. Schnittker ◽  
T. Witke ◽  
C. Rüscher ◽  
S. Weber ◽  
...  

AbstractPulsed Laser Deposition (PLD) allows the ablation of nonconductive and high melting point target materials and the preparation of films with complex composition. High energy impact leads to melting and evaporation of the target material in a single step. In case of mullite ablation, the flux of the metal components is stoichiometric. Under reduced pressure the oxygen content in the layers decreases. However, after a short oxidation treatment, the formation of mullite in the coating is completed, as confirmed by IR spectroscopy and XRD investigations. For a commercial Si-SiC precoated C/C material, the effectiveness of additional PLD mullite layers as outer oxidation protection is tested in the temperature range 773 K < T < 1873 K. Mullite coatings with a thickness of 2.5 pm improve the oxidation behaviour significantly. Because of SiO2 formation at the mullite-SiC interface, all samples exhibited a mass increase upon oxidation. For oxidation durations of three days, only amorphous SiO2 is formed at the mullite-SiC interface. The inward diffusion of oxygen across the outer mullite-containing layer controls the kinetics of the reaction, as was deduced from 18O diffusivity measurements in PLD mullite layers. At temperatures close to the eutectic temperature (1860 K), mullite can seal defects. The calculated oxidation rates resulting from the diffusion parameters in SiO2 and mullite are close to the thermogravimetric data.


2013 ◽  
Vol 372 ◽  
pp. 143-148 ◽  
Author(s):  
Suhaib Umer Ilyas ◽  
Rajashekhar Pendyala ◽  
Narahari Marneni

Nanofluids are considered as promising heat transfer fluids due to enhanced heat transfer ability as compared to the base fluid alone. Knowledge of settling characteristics of nanofluids has great importance towards stability of nanosuspensions. Sedimentation behavior of Alumina nanoparticles due to gravity has been investigated using different proportions of ethanol-water binary mixtures. Nanoparticles of 40 nm and 50 nm are used in this investigation at 23°C. Sediment height with respect to time is measured by visualization method in batch sedimentation. The effect of sonication on the sedimentation behavior is also studied using ultrasonic agitator. The effect of particle diameter, nanoparticle concentration and ethanol-water proportion on sedimentation behavior of nanofluids has been investigated and discussed.


2017 ◽  
Vol 69 (3) ◽  
pp. 414-419
Author(s):  
Mimi Azlina Abu Bakar ◽  
Siti Norazlini Abd Aziz ◽  
Muhammad Hussain Ismail

Purpose This paper aims to investigate the vital characteristic of an innovative ceramic injection molding (CIM) process for orthopedic application with controlled porosity and improved tribological and mechanical properties which were affected by complex tribological interactions, whether lubricated like hip implants and other artificial prostheses. The main objective is to maximize the usage of palm stearin as a single based binder as the function of flow properties during injection molding process. Design/methodology/approach The binder used in this present study consists of 100 per cent palm stearin manufactured by Kempas Oil Sdn Bhd and supplied by Vistec Technology Sdn Bhd. The feedstock was prepared by using a Z-blade mixer (Thermo Haake Rheomix OS) and Brabender mixer model R2400. The feedstock prepared was injection molded using a manually operated vertical benchtop machine with an average pressure of about 5-7 bars. The firing step included the temporary holds at intermediate temperatures to burn out organic binders. At this stage, the green molded specimen was de-bound using a single-step wick-debinding method. Findings The maximum content of ceramic material is applied to investigate the efficiencies of net formulation that can be achieved by ceramic materials. The longer the viscosity will change with shear rate, the higher the value of n obtained instead. From the slope of the curves obtained in Figure 3, the value of n for the feedstock was determined to be less than 1, which indicates a pseudoplastic behavior and suitability for the molding process. Moreover, high shear sensitivity is important in producing complex and intrinsic specimens which are leading products in the CIM industry. Originality/value The feedstock containing HAp powder and palm stearin binder was successfully prepared at very low temperature of 70°C, which promoting a required pseudo-plastic behavior during rheological test. The single binder palm stearin should be optimized in other research works carried out, as palm stearin is most preferred compared to other polymeric materials that provided high energy consumption when subjected to the sintering process. Besides the binder is widely available in Malaysia, low cost and harmless effect during debinding process.


Author(s):  
P. B. Lagov ◽  
◽  
A. S. Drenin ◽  
A. A. Meshcheryakov ◽  
N. A. Yudanov ◽  
...  

The paper analyses the possibility to reduce the sensitivity of silicon integrated circuits (ICs) to single radiation effects by means of radiation-thermal treatment including irradiation in charged particle accelerators and subsequent low-temperature heat treatment. It is shown that reduction in sensitivity to single radiation effects is provided by formation of thermostable recombination centers in semiconductor IC structure in necessary concentrations. At the same time a decrease in primary photocurrent generated by heavy charged particles or high-energy protons, reduction in transfer coefficients of parasitic bipolar transistors forming thyristor structures, reduction in carrier avalanche multiplication coefficients at high electric field strengths can be provided. Radiationthermal treatment can be introduced in the manufacturing process of ICs of various classes at the end of the manufacturing cycle and does not require correction of the basic technology. A possible undesirable growth of inverse currents and preservation of values of other electrical parameters within acceptable values when using radiation-thermal treatment is provided by choosing optimal modes of irradiation and annealing which are established in the course of experimental tests. The calculated evaluation has shown that using radiation-thermal treatment in the technology of IC fabrication can provide a decrease in the effective collection length of non-equilibrium charge carriers generated under the influence of single radiation effects by at least 10 times which allows considering radiation-thermal treatment as an effective technological tool to suppress the sensitivity to single radiation effects.


Author(s):  
Mohammed Alktranee

This paper appears potential of use nanofluids as a working fluid with the photovoltaic/thermal (PV/T) systems as an alternative of the conventional liquids in improves the efficiency of the hybrid PV/T system. The review highlights the impact of some parameters (base fluid, volume fraction, the concentration of nanoparticles, surfactants, shape, and size of nanoparticles) on nanofluids' thermophysical properties and their effect on the PV/T system's efficiencies. Hence, it discusses the PV/T behavior, which uses different nanofluids based on previous experimental, analytical, and numerical studies. The review concluded that using nanofluid as a cooling fluid or spectral filter contributes by enhancing the performance and increasing the PV/T system's efficiency. Thus, each type of nanofluids has certain features that contribute to removing the PV cells' excess heat by cooling it, contributing to its work's stability, and increasing its productivity. Nanofluids thermophysical properties play an intrinsic role by enhancing nanofluids' performance, thus positively reflecting on the PV/T system's performance. Despite the variation in the values of thermal and electrical efficiency, Most of the studies that used nanofluids have achieved encouraging results that appeared by improving the performance of PV/T systems.


Sign in / Sign up

Export Citation Format

Share Document