The Concept Design of Tornado Like Jet Condenser Heat Exchanger

Author(s):  
G. I. Kiknadze ◽  
I. A. Gachechiladze ◽  
T. T. Barnaveli

The concept design and fabrication of cost-effective and resource-saving Tornado Like Jet Condensers Heat Exchangers is described. Tornado Like Jet (TLJ) Technologies are utilizing the features of the streams of the continuous medium over the surfaces with dimples of double curvature inducing the secondary twisted vortexes self organization. (TLJ) Technologies are characterized by high functional efficiency of heat and mass exchange. The project is based on theoretical and experimental results obtained by the authors of the project in past years in development of a (TLJ) Technologies package.

Author(s):  
Anton Moisseytsev ◽  
Qiuping Lv ◽  
James J. Sienicki

The capability to utilize dry air cooling by which heat is directly rejected to the air atmosphere heat sink is one of the benefits of the supercritical carbon dioxide (sCO2) energy conversion cycle. For the selection and analysis of the heat exchanger options for dry air cooling applications for the sCO2 cycle, two leading forced air flow design approaches have been identified and analyzed for this application; an air cooler consisting of modular finned tube air coolers; and an air cooler consisting of modular compact diffusion-bonded heat exchangers. The commercially available modular finned tube air cooler is found to be more cost effective and is selected as the reference for dry air cooling.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 695
Author(s):  
Yue Xu ◽  
Heri Ambonisye Kayange ◽  
Guomin Cui

The aim of heat exchanger network synthesis is to design a cost-effective network configuration with the maximum energy recovery. Therefore, a nodes-based non-structural model considering a series structure (NNM) is proposed. The proposed model utilizes a simple principle based on setting the nodes on streams such that to achieve optimization of a heat exchanger network synthesis (HENS) problem. The proposed model uses several nodes to quantify the possible positions of heat exchangers so that the matching between hot and cold streams is random and free. Besides the stream splits, heat exchangers with series structures are introduced in the proposed model. The heuristic algorithm used to solve NNM model is a random walk algorithm with compulsive evolution. The proposed model is used to solve four scale cases of a HENS problem, the results show that the costs obtained by NNM model can be respectively lower 3226 $/a(Case 1), 11,056 $/a(Case 2), 2463 $/a(Case 3), 527 $/a(Case 4) than the best costs listed in literature.


Author(s):  
G. I. Kiknadze ◽  
I. A. Gachechiladze ◽  
T. T. Barnaveli

The mechanisms of the phenomenon of the tornado-like jets self-organization are described. Tornado-like jets are incorporated into a continuous medium stream and induced by three-dimensional reliefs of double curvature indented on surfaces.


Author(s):  
Ali Siahpush ◽  
Piyush Sabharwall

This study presents the material challenges associated with Advanced Reactor Concepts (ARC) such as the Advanced High Temperature Reactor (AHTR). ARCs are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that introduce several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects, such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the American Society of Mechanical Engineers (ASME) Section III and Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environments are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed with potential benefit.


2005 ◽  
Vol 287 ◽  
pp. 75-84 ◽  
Author(s):  
In Sub Han ◽  
Doo Won Seo ◽  
Shi Woo Lee ◽  
Ki Seok Hong ◽  
Sang Kuk Woo ◽  
...  

The Ministry of Commerce, Industry and Energy has contracted with the KIER including the ceramics company to localize of the ceramic heat exchanger tubes and its components. The basic objective of this paper is to develop a ceramic formulation and process which would yield a cost-effective and long-life Si/SiC tube materials by extrusion and reaction sintering process. Thus,KIER is currently developed and localized heat exchanger tubes with 40mm out diameter, 1500mm length. This paper was tested the mechanical and thermal properties of the localized Si/SiC tubes obtained from reaction sintering. Also, the effect of energy savings of the heat exchanger after exposure to forging furnace with hot corrosive environment was investigated.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3375
Author(s):  
Charles Maragna ◽  
Fleur Loveridge

Pile heat exchangers offer a cost effective route to implementation of ground-source heat pump systems for many large commercial buildings compared with traditional boreholes. Such projects typically use thermal response tests to determine the key input parameters for system design, namely soil thermal conductivity and heat exchanger thermal resistance. However, this brings challenges for pile heat exchanger based systems, where in situ thermal response tests are known to be less reliable due to the large thermal capacity of the pile. This paper presents a new “black box” resistance capacitive model for applications to pile thermal response tests. The approach is tested against case study data and shown to perform well. Additional test duration savings are shown to be possible if a novel combination of borehole and pile thermal response tests is applied together to determine design parameters.


2021 ◽  
Vol 5 (2) ◽  
pp. 17
Author(s):  
Valli Trisha ◽  
Kai Seng Koh ◽  
Lik Yin Ng ◽  
Vui Soon Chok

Limited research of heat integration has been conducted in the oleochemical field. This paper attempts to evaluate the performance of an existing heat exchanger network (HEN) of an oleochemical plant at 600 tonnes per day (TPD) in Malaysia, in which the emphases are placed on the annual saving and reduction in energy consumption. Using commercial HEN numerical software, ASPEN Energy Analyzer v10.0, it was found that the performance of the current HEN in place is excellent, saving over 80% in annual costs and reducing energy consumption by 1,882,711 gigajoule per year (GJ/year). Further analysis of the performance of the HEN was performed to identify the potential optimisation of untapped heating/cooling process streams. Two cases, which are the most cost-effective and energy efficient, were proposed with positive results. However, the second case performed better than the first case, at a lower payback time (0.83 year) and higher annual savings (0.20 million USD/year) with the addition of one heat exchanger at a capital cost of USD 134,620. The first case had a higher payback time (4.64 years), a lower annual saving (0.05 million USD/year) and three additional heaters at a capital cost of USD 193,480. This research has provided a new insight into the oleochemical industry in which retrofitting the HEN can further reduce energy consumption, which in return will reduce the overall production cost of oleochemical commodities. This is particularly crucial in making the product more competitive in its pricing in the global market.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Jiuyi Liu ◽  
Caifu Qian ◽  
Huifang Li

Thermal stress is an important factor influencing the strength of a heat exchanger tubesheet. Some studies have indicated that, even in floating-head or U-tube heat exchangers, the thermal stress at the tubesheet is significant in magnitude. For exploring the value, distribution, and the influence factors of the thermal stress at the tubesheet of these kind heat exchangers, a tubesheet and triangle arranged tubes with the tube diameter of 25 mm were numerically analyzed. Specifically, the thermal stress at the tubesheet center is concentrated and analyzed with changing different parameters of the tubesheet, such as the temperature difference between tube-side and shell-side fluids, tubesheet diameter, thickness, and the tube-hole area ratio. It is found that the thermal stress of the tubesheet of floating-head or U-tube heat exchanger was comparable in magnitude with that produced by pressures, and the distribution of the thermal stress depends on the tube-hole area and the temperature inside the tubes. The thermal stress at the center of the tubesheet surface is high when tube-hole area ratio is very low. And with increasing the tube-hole area ratio, the stress first decreases rapidly and then increases linearly. A formula was numerically fitted for calculating the thermal stress at the tubesheet surface center which may be useful for the strength design of the tubesheet of floating-head or U-tube heat exchangers when considering the thermal stress. Numerical tests show that the fitted formula can meet the accuracy requirements for engineering applications.


2012 ◽  
Vol 629 ◽  
pp. 699-703
Author(s):  
Chun Sheng Guo ◽  
Wen Jing Du ◽  
Lin Cheng

The entransy loss minimization approach for the heat exchanger optimization design was established by Guo Z Y; the study based Guo Z Y’s works, found relationship between the entransy loss uniformity and the heat exchanger performance and the expression of the local entransy loss rate for heat convection was derived, numerical results of the heat transfer in a chevron plate heat exchanger and helix baffle heat exchanger show that the larger entransy loss uniformity factor appear in about Re=2000 and the entransy loss uniformity factor of chevron plate heat exchanges higher than helix baffle one.


Author(s):  
H. Zabiri ◽  
V. R. Radhakrishnan ◽  
M. Ramasamy ◽  
N. M. Ramli ◽  
V. Do Thanh ◽  
...  

The Crude Preheat Train (CPT) is a set of large heat exchangers which recover the waste heat from product streams back to preheat the crude oil. The overall heat transfer coefficient in these heat exchangers may be significantly reduced due to fouling. One of the major impacts of fouling in CPT operation is the reduced heat transfer efficiency. The objective of this paper is to develop a predictive model using statistical methods which can a priori predict the rate of the fouling and the decrease in heat transfer efficiency in a heat exchanger in a crude preheat train. This predictive model will then be integrated into a preventive maintenance diagnostic tool to plan the cleaning of the heat exchanger to remove the fouling and bring back the heat exchanger efficiency to their peak values. The fouling model was developed using historical plant operating data and is based on Neural Network. Results show that the predictive model is able to predict the shell and tube outlet temperatures with excellent accuracy, where the Root Mean Square Error (RMSE) obtained is less than 1%, correlation coefficient R2 of approximately 0.98 and Correct Directional Change (CDC) values of more than 90%. A preliminary case study shows promising indication that the predictive model may be integrated into a preventive maintenance scheduling for the heat exchanger cleaning.


Sign in / Sign up

Export Citation Format

Share Document