Analysis of the Impact of Uncertainties in Inputs on CFD Predictions of Gasoline Compression Ignition

Author(s):  
Janardhan Kodavasal ◽  
Stephen Ciatti ◽  
Sibendu Som

Computational fluid dynamics (CFD) is a valuable tool to gain insights into the combustion process, particularly for novel engine combustion concepts that do not have significant experimental data available. However, prediction of targets of interest from a CFD simulation can oftentimes be quite sensitive to the uncertainties in inputs to the CFD model. These uncertainties could be in the experimental boundary and initial conditions, fuel properties, CFD model constants, chemical kinetic rates, etc. In this work we isolate the effect of uncertainties in some key inputs in the form of experimental boundary conditions and CFD model parameters on combustion and emissions targets of interest for gasoline compression ignition (GCI) at two operating conditions — idle, and low-load. The uncertainties in the subset of inputs studied in this work were identified to have the greatest impact out of 34 inputs to the CFD model studied by means of a global sensitivity analysis (GSA) performed in our prior work. The goal of this study is to perform a more focused study as a follow-on to that GSA, by perturbing only a single parameter at a time.

Author(s):  
Fredrik Herland Andersen ◽  
Stefan Mayer

Large commercial ships such as container vessels and bulk carriers are propelled by low-speed, uniflow scavenged two-stroke diesel engines. The integral in-cylinder process in this type of engine is the scavenging process, where the burned gas from the combustion process is evacuated through the exhaust valve and replaced with fresh air for the subsequent compression stroke. The scavenging air enters the cylinder via inlet ports which are uncovered by the piston at bottom dead center (BDC). The exhaust gas is then displaced by the fresh air. The scavenging ports are angled to introduce a swirling component to the flow. The in-cylinder swirl is beneficial for air-fuel mixture, cooling of the cylinder liner and minimizing dead zones where pockets of exhaust gas are trapped. However, a known characteristic of swirling flows is an adverse pressure gradient in the center of the flow, which might lead to a local deficit in axial velocity and the formation of central recirculation zones, known as vortex breakdown. This paper will present a CFD analysis of the scavenging process in a MAN B&W two-stroke diesel engine. The study include a parameter sweep where the operating conditions such as air amount, port timing and scavenging pressure are varied. The CFD model comprise the full geometry from scavenge receiver to exhaust receiver. Asymmetric inlet and outlet conditions is included as well as the dynamics of a moving piston and valve. Time resolved boundary conditions corresponding to measurements from an operating, full scale production, engine as well as realistic initial conditions are used in the simulations. The CFD model provides a detailed description of the in-cylinder flow from exhaust valve opening (EVO) to exhaust valve closing (EVC). The study reveals a close coupling between the volume flow (delivery ratio) and the in-cylinder bulk purity of air which appears to be independent of operating conditions, rpm, scavenge air pressure, BMEP etc. The bulk purity of air in the cylinder shows good agreement with a simple theoretical perfect displacement model.


Author(s):  
Janardhan Kodavasal ◽  
Christopher Kolodziej ◽  
Stephen Ciatti ◽  
Sibendu Som

Gasoline compression ignition (GCI) is a low temperature combustion (LTC) concept that has been gaining increasing interest over the recent years owing to its potential to achieve diesel-like thermal efficiencies with significantly reduced engine-out nitrogen oxides (NOx) and soot emissions compared to diesel engines. In this work, closed-cycle computational fluid dynamics (CFD) simulations are performed of this combustion mode using a sector mesh in an effort to understand effects of model settings on simulation results. One goal of this work is to provide recommendations for grid resolution, combustion model, chemical kinetic mechanism, and turbulence model to accurately capture experimental combustion characteristics. Grid resolutions ranging from 0.7 mm to 0.1 mm minimum cell sizes were evaluated in conjunction with both Reynolds averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) based turbulence models. Solution of chemical kinetics using the multi-zone approach is evaluated against the detailed approach of solving chemistry in every cell. The relatively small primary reference fuel (PRF) mechanism (48 species) used in this study is also evaluated against a larger 312-species gasoline mechanism. Based on these studies the following model settings are chosen keeping in mind both accuracy and computation costs — 0.175 mm minimum cell size grid, RANS turbulence model, 48-species PRF mechanism, and multi-zone chemistry solution with bin limits of 5 K in temperature and 0.05 in equivalence ratio. With these settings, the performance of the CFD model is evaluated against experimental results corresponding to a low load start of injection (SOI) timing sweep. The model is then exercised to investigate the effect of SOI on combustion phasing with constant intake valve closing (IVC) conditions and fueling over a range of SOI timings to isolate the impact of SOI on charge preparation and ignition. Simulation results indicate that there is an optimum SOI timing, in this case −30°aTDC (after top dead center), which results in the most stable combustion. Advancing injection with respect to this point leads to significant fuel mass burning in the colder squish region, leading to retarded phasing and ultimately misfire for SOI timings earlier than −42°aTDC. On the other hand, retarding injection beyond this optimum timing results in reduced residence time available for gasoline ignition kinetics, and also leads to retarded phasing, with misfire at SOI timings later than −15°aTDC.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 463
Author(s):  
Gopinathan R. Abhijith ◽  
Leonid Kadinski ◽  
Avi Ostfeld

The formation of bacterial regrowth and disinfection by-products is ubiquitous in chlorinated water distribution systems (WDSs) operated with organic loads. A generic, easy-to-use mechanistic model describing the fundamental processes governing the interrelationship between chlorine, total organic carbon (TOC), and bacteria to analyze the spatiotemporal water quality variations in WDSs was developed using EPANET-MSX. The representation of multispecies reactions was simplified to minimize the interdependent model parameters. The physicochemical/biological processes that cannot be experimentally determined were neglected. The effects of source water characteristics and water residence time on controlling bacterial regrowth and Trihalomethane (THM) formation in two well-tested systems under chlorinated and non-chlorinated conditions were analyzed by applying the model. The results established that a 100% increase in the free chlorine concentration and a 50% reduction in the TOC at the source effectuated a 5.87 log scale decrement in the bacteriological activity at the expense of a 60% increase in THM formation. The sensitivity study showed the impact of the operating conditions and the network characteristics in determining parameter sensitivities to model outputs. The maximum specific growth rate constant for bulk phase bacteria was found to be the most sensitive parameter to the predicted bacterial regrowth.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1366
Author(s):  
Tatiana Zhiltsova. ◽  
Nelson Martins ◽  
Mariana R. F. Silva ◽  
Carla F. Da Silva ◽  
Mirtha A. O. Lourenço ◽  
...  

In the present study, two photocatalytic graphene oxide (GO) and carbon nanotubes (CNT) modified TiO2 materials thermally treated at 300 °C (T300_GO and T300_CNT, respectively) were tested and revealed their conversion efficiency of nitrogen oxides (NOx) under simulated solar light, showing slightly better results when compared with the commercial Degussa P25 material at the initial concentration of NOx of 200 ppb. A chemical kinetic model based on the Langmuir–Hinshelwood (L-H) mechanism was employed to simulate micropollutant abatement. Modeling of the fluid dynamics and photocatalytic oxidation (PCO) kinetics was accomplished with computational fluid dynamics (CFD) approach for modeling single-phase liquid fluid flow (air/NOx mixture) with an isothermal heterogeneous surface reaction. A tuning methodology based on an extensive CFD simulation procedure was applied to adjust the kinetic model parameters toward a better correspondence between simulated and experimentally obtained data. The kinetic simulations of heterogeneous photo-oxidation of NOx carried out with the optimized parameters demonstrated a high degree of matching with the experimentally obtained NOx conversion. T300_CNT is the most active photolytic material with a degradation rate of 62.1%, followed by P25-61.4% and T300_GO-60.4%, when irradiated, for 30 min, with emission spectra similar to solar light.


2005 ◽  
Vol 6 (5) ◽  
pp. 487-495 ◽  
Author(s):  
K Saijyo ◽  
T Kojima ◽  
K Nishiwaki

We analyzed the interrelationships between mixture heterogeneity and reaction in a premixed charge compression ignition (PCCI) combustion, using large eddy simulation (LES) in conjunction with a reaction kinetics model. The aim of this analysis is to find the statistical characteristics of the mixture heterogeneity in a turbulent flowfield for moderating the PCCI combustion and for increasing an output limit, which is restricted by a severe knock. Several different initial conditions of heterogeneity of an air-fuel or air-fuel-EGR gas mixture were given at the intake valve closing time by a new method, which generated statistically reasonable turbulent fluctuations in both velocity and fuel mass fraction fields. The autoignition and combustion behaviours were analysed for several different sets of the r.m.s. and the length scale of the fluctuations in the fuel mass fraction. The analyses show that the combination of a larger r.m.s. value and a longer-length scale of the fluctuations in fuel mass fraction is effective to slow the combustion in a hot flame reaction phase and to avoid knocking. The analytical results also show that the heterogeneous distribution of an EGR gas has a considerable effect in making the combustion slower, even when a fuel-air mixture is homogeneous.


Author(s):  
Ryan A. Bandura ◽  
Timothy J. Jacobs

Computational fluid dynamics (CFD) is now a ubiquitous computational tool for engine design and diagnosis. It is often necessary to provide well-known initial cycle conditions to commence the CFD computations. Such initial conditions can be provided by experimental data. To create an opportunity to computationally study engine conditions where experimental data are not available, a zero-dimensional quasi-predictive thermodynamic simulation is developed that uses well-established spray model to predict rate of heat release and calculated burned gas composition and temperature to predict nitric oxide (NO) concentration. This simulation could in turn be used in reverse to solve for initial cylinder conditions for a targeted NO concentration. This paper details the thermodynamic simulation for diesel engine operating conditions. The goal is to produce a code that is capable of predicting NO emissions as well as performance characteristics such as mean effective pressure (MEP) and brake specific fuel consumption (BSFC). The simulation uses general conservation of mass and energy approaches to model intake, compression, and exhaust. Rate of heat release prediction is based on an existing spray model to predict how fuel concentrations within the spray jet change with penetration. Rate of heat release provides predicted cylinder pressure, which is then validated against experimental pressure data under known operating conditions. An equilibrium mechanism is used to determine burned gas composition which, along with burned gas temperature, can be used for prediction of NO in the cylinder. NO is predicted using the extended Zeldovich mechanism. This mechanism is highly sensitive to temperature, and it is therefore important to accurately predict cylinder gas temperature to obtain correct NO values. Additionally, MEP and BSFC are determined. The simulation focuses on single fuel injection events, but insights are provided to expand the simulation to model multiple injection events.


Author(s):  
Jin Yan ◽  
Andrew Mallner

Boiling water reactors (BWRs) are equipped with a standby liquid control system (SLCS). The SLCS is used to inject boron to shutdown the reactor from full power condition in the event that the control rods fail to insert. In order for the SLCS system to shut down the reactor, adequate mixing of the borated solution with the reactor coolant is necessary. In BWRs prior to BWR 5, the boron injection points are located in the lower plenum. The objective of this project is to evaluate the impact of the operating conditions on the boron injection based on the understanding of the behavior of multi-species flow in typical pre-BWR 5 reactors by using computational fluid dynamics (CFD). The project is divided into two phases. At the first phase, a CFD model based on the test configurations of GE 1/6 scale test program was established. The results were validated against measurements conducted by GE during the 1/6 scale test program performed in 1981. The validation shows that the CFD can give accurate predictions of the boron mixing. The technical approach employed in the CFD model was adequate to capture the boron mixing process in the BWR lower plenum. The second phase of the project is the sensitivity study based on the same technical approach developed in the first phase. However, a simplified BWR lower plenum model was used due to the time constrain. In the sensitivity study, the baseline case and four additional cases with different operating conditions were investigated using the same CFD approach.


2020 ◽  
Author(s):  
Shrabanti Roy ◽  
Omid Askari

Abstract Reducing the size of a detail chemical kinetic is necessary in the prospect of numerical computation. In this work a skeleton reduction is done on a detail mechanism of ethanol. The detailed ethanol mechanism used here is developed through reaction mechanism generator (RMG). The generated mechanism is validated at wide range of engine relevant operating conditions using laminar burning speed (LBS), ignition delay time (IDT) and species mole fraction calculation at different reactor conditions. This detail mechanism consists of 67 species and 1031 reactions. Though the mechanism is in a very good agreement at various operating ranges with experimental data, it is costly to use a detail mechanism for 3D computational fluid dynamics (CFD) analysis. To make the mechanism applicable for CFD simulation further reduction of species and reactions is essential. In this work a skeleton mechanism is generated using directed relation graph technique with error propagation and sensitivity analysis (DRGEPSA). The DRGEPSA method, works based on error calculation at user defined condition. This technique is a combination of two methods, directed relation graph with error propagation (DRGEP) and directed relation graph with sensitivity analysis (DRGASA). To ensure the wide range of applicability of the skeleton mechanism, IDT is calculated at temperature, pressure, and equivalence ratio ranges from 700–2000 K, 1–40 atm and 0.6–1.4 respectively. A 10% error estimation is considered during the process. Initially DRGEP is applied on the detail mechanism to eliminate unimportant species. Further, sensitivity analysis helps to identify and reduce more unimportant species from the mechanism. Reactions related to the deleted species are automatically removed from the mechanism in each step. The final skeleton mechanism has 42 species and 464 reactions. This skeleton mechanism is validated and compared with different IDT data for the conditions not used in reduction technique. Results of LBS and different species concentration from reactor conditions is considered for validation. The skeleton mechanism can reduce computational time by 35% for LBS and 25% for IDT calculation. For future work, this skeleton mechanism will be considered in optimum reduction process.


1999 ◽  
Author(s):  
G. H. Abd Alla ◽  
H. A. Soliman ◽  
O. A. Badr ◽  
M. F. Abd Rabbo

Abstract A quasi-two zone predictive model developed in the present work for the prediction of the combustion processes in dual fuel engines and some of their performance features. Methane is used as the main fuel while employing a small quantity of liquid fuel (pilot) injected through the conventional diesel fuel system. This model emphasizes the effects of chemical kinetics activity of the premixed gaseous fuel on the combustion performance, while the role of the pilot fuel in the ignition and heat release processes is considered. A detailed chemical kinetic scheme consists of 178 elementary reaction steps and 41 chemical species is employed to describe the oxidation of the gaseous fuel from the start of compression to the end of expansion process. The associated formation and concentrations of exhaust emissions are correspondingly established. This combustion model is able to establish the development of the combustion process with time and the associated important operating parameters such as pressure, temperature, rates of energy release and composition. Predicted values for methane operation show good agreement with corresponding previous experimental values over a range of operating conditions mainly associated with high load operation.


Sign in / Sign up

Export Citation Format

Share Document