Analysis of Major Group Structures Used for Nuclear Reactor Simulations

Author(s):  
Marco Di Filippo ◽  
Jiri Krepel ◽  
Konstantin Mikityuk ◽  
Horst-Michael Prasser

Nuclear reactor simulation is often based on multi-group cross-section libraries. The structure and resolution of these libraries have a strong influence on the accuracy and computational time; hence, number of groups and energy structure must be carefully considered. The relationship between group structures and how they impact generated cross-sections can be a critical parameter. Common energy boundaries shared among major group structures were identified and the relative kinship among those was reconstructed in an effort to build a family tree of major group structures. Stochastic code Serpent2 [1] was employed to generate cross-sections of selected isotopes at different reactor compositions and conditions, using the investigated energy group structures. The impact on their generation was quantified by spectral weighted deviation. The 35 major energy structures were divided into three basic families. The key parameters distinguishing them were their applicability to thermal or fast reactors and their applicability in neutronic or multiphysics investigations. A sensitivity threshold of the generated cross-sections over the group structure resolution was investigated. The aim was to identify a group structure with very low dependency on the actual reactor spectrum.

2021 ◽  
Vol 2 (1) ◽  
pp. 86-96
Author(s):  
Adam G. Nelson ◽  
William Boyd ◽  
Paul K. Romano

The angular dependence of flux-weighted multigroup cross sections is commonly neglected when generating multigroup libraries. The error of this flux separability approximation is typically not isolated from other error sources due to a lack of availability of library generation and corresponding solvers that cannot relax this approximation. These errors can now be isolated and quantified with the availability of a multigroup Monte Carlo transport and multigroup library-generation capability in the OpenMC Monte Carlo transport code. This work will discuss relevant details of the OpenMC implementation, provide an example case useful for detailing the type of errors one can expect from making the flux separability approximation, and end with more realistic problems which show the impact of the approximation and highlight how it can strongly arise from an energy-dependent resonance absorption effect. Since the angle-dependence is intrinsically linked to the energy group structure, these examples also show that relaxing the flux separability approximation with angle-dependent cross sections could be used to reduce either the fine-tuning required to set a multigroup energy structure for a specific reactor type or the number of energy groups required to obtain a desired level of accuracy for a given problem. This trade-off could increase the costs of generating multigroup cross sections, and has the potential to require more memory for storing the multigroup library during the transport calculations, but it can significantly reduce the computational time required since the runtime of a discrete ordinates or method of characteristics neutron transport solver scales roughly linearly with the number of groups.


2009 ◽  
Vol 1215 ◽  
Author(s):  
Laurence Luneville ◽  
David Simeone ◽  
Gianguido Baldinozzi ◽  
Dominique Gosset ◽  
yves serruys

AbstractEven if the Binary Collision Approximation does not take into account relaxation processes at the end of the displacement cascade, the amount of displaced atoms calculated within this framework can be used to compare damages induced by different facilities like pressurized water reactors (PWR), fast breeder reactors (FBR), high temperature reactors (HTR) and ion beam facilities on a defined material. In this paper, a formalism is presented to evaluate the displacement cross-sections pointing out the effect of the anisotropy of nuclear reactions. From this formalism, the impact of fast neutrons (with a kinetic energy En superior to 1 MeV) is accurately described. This point allows calculating accurately the displacement per atom rates as well as primary and weighted recoil spectra. Such spectra provide useful information to select masses and energies of ions to perform realistic experiments in ion beam facilities.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ji Ma ◽  
Chen Hao ◽  
Lixun Liu ◽  
Yuekai Zhou

For nuclear reactor physics, uncertainties in the multigroup cross sections inevitably exist, and these uncertainties are considered as the most significant uncertainty source. Based on the home-developed 3D high-fidelity neutron transport code HNET, the perturbation theory was used to directly calculate the sensitivity coefficient of keff to the multigroup cross sections, and a reasonable relative covariance matrix with a specific energy group structure was generated directly from the evaluated covariance data by using the transforming method. Then, the “Sandwich Rule” was applied to quantify the uncertainty of keff. Based on these methods, a new SU module in HNET was developed to directly quantify the keff uncertainty with one-step deterministic transport methods. To verify the accuracy of the sensitivity and uncertainty analysis of HNET, an infinite-medium problem and the 2D pin-cell problem were used to perform SU analysis, and the numerical results demonstrate that acceptable accuracy of sensitivity and uncertainty analysis of the HNET are achievable. Finally, keff SU analysis of a 3D minicore was analyzed by using the HNET, and some important conclusions were also drawn from the numerical results.


Author(s):  
Martin Lovecký ◽  
Jan Prehradný ◽  
Radek Škoda

Research of nuclear reactor fuel depletion aims at development and introduction of advanced types of burnable absorbers (BA) applied within nuclear fuel. BAs compensate for the initial reactivity excess and consequently may allow for lower power peaking factors and longer fuel cycles with higher fuel enrichments. Modern computer codes for nuclear fuel depletion calculation require a substantial amount of computational time. Therefore, any parametric calculations for BA selection need to be carried out only with a fast depletion code. The main purpose of the newly developed UWB1 code is a rapid calculation of nuclear fuel depletion, which is achieved by the approximations in the equations describing transport part of fuel depletion. Microscopic cross sections are assumed to be constant through depletion calculation steps. The paper describes the first step of analysis using a new version of UWB1, that was accomplished with the assumption of uniformly distributed BA in fuel. BA elements, nuclides and nuclide mixtures were compared and their performance was consequently evaluated based on multiplication coefficient behavior during depletion.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3378
Author(s):  
Dean Price ◽  
Thomas Folk ◽  
Matthew Duschenes ◽  
Krishna Garikipati ◽  
Brendan Kochunas

In the two-step method for nuclear reactor simulation, lattice physics calculations are performed to compute homogenized cross-sections for a variety of burnups and lattice configurations. A nodal code is then used to perform full-core analysis using the pre-calculated homogenized cross-sections. One source of uncertainty introduced in this method is that the lattice configuration or depletion conditions typically do not match a pre-calculated one from the lattice physics simulations. Therefore, some interpolation model must be used to estimate the homogenized cross-sections in the nodal code. This current study provides a methodology for sensitivity analysis to quantify the impact of state variables on the homogenized cross-sections. This methodology also allows for analyses of the historical effect that the state variables have on homogenized cross-sections. An application of this methodology on a lattice for the Westinghouse AP1000® reactor is presented where coolant density, fuel temperature, soluble boron concentration, and control rod insertion are the state variables of interest. The effects of considering the instantaneous values of the state variables, historical values of the state variables, and burnup-averaged values of the state variables are analyzed. Using these methods, it was found that a linear model that only considers the instantaneous and burnup-averaged values of state variables can fail to capture some variations in the homogenized cross-sections.


2016 ◽  
pp. 3564-3575 ◽  
Author(s):  
Ara Sergey Avetisyan

The efficiency of virtual cross sections method and MELS (Magneto Elastic Layered Systems) hypotheses application is shown on model problem about distribution of wave field in thin surface layers of waveguide when plane wave signal is propagating in it. The impact of surface non-smoothness on characteristics of propagation of high-frequency horizontally polarized wave signal in isotropic elastic half-space is studied. It is shown that the non-smoothness leads to strong distortion of the wave signal over the waveguide thickness and along wave signal propagation direction as well.  Numerical comparative analysis of change in amplitude and phase characteristics of obtained wave fields against roughness of weakly inhomogeneous surface of homogeneous elastic half-space surface is done by classical method and by proposed approach for different kind of non-smoothness.


2019 ◽  
Vol 34 (32) ◽  
pp. 1950259 ◽  
Author(s):  
S. M. Troshin ◽  
N. E. Tyurin

We comment briefly on relations between the elastic and inelastic cross-sections valid for the shadow and reflective modes of the elastic scattering. Those are based on the unitarity arguments. It is shown that the redistribution of the probabilities of the elastic and inelastic interactions (the form of the inelastic overlap function becomes peripheral) under the reflective scattering mode can lead to increasing ratio of [Formula: see text] at the LHC energies. In the shadow scattering mode, the mechanism of this increase is a different one, since the impact parameter dependence of the inelastic interactions probability is central in this mode. A short notice is also given on the slope parameter and the leading contributions to its energy dependence in both modes.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2690
Author(s):  
Bo Pan ◽  
Xuguang Wang ◽  
Zhenyang Xu ◽  
Lianjun Guo ◽  
Xuesong Wang

The Split Hopkinson Pressure Bar (SHPB) is an apparatus for testing the dynamic stress-strain response of the cement mortar specimen with pre-set joints at different angles to explore the influence of joint attitudes of underground rock engineering on the failure characteristics of rock mass structure. The nuclear magnetic resonance (NMR) has also been used to measure the pore distribution and internal cracks of the specimen before and after the testing. In combination with numerical analysis, the paper systematically discusses the influence of joint angles on the failure mode of rock-like materials from three aspects of energy dissipation, microscopic damage, and stress field characteristics. The result indicates that the impact energy structure of the SHPB is greatly affected by the pre-set joint angle of the specimen. With the joint angle increasing, the proportion of reflected energy moves in fluctuation, while the ratio of transmitted energy to dissipated energy varies from one to the other. NMR analysis reveals the structural variation of the pores in those cement specimens before and after the impact. Crack propagation direction is correlated with pre-set joint angles of the specimens. With the increase of the pre-set joint angles, the crack initiation angle decreases gradually. When the joint angles are around 30°–75°, the specimens develop obvious cracks. The crushing process of the specimens is simulated by LS-DYNA software. It is concluded that the stresses at the crack initiation time are concentrated between 20 and 40 MPa. The instantaneous stress curve first increases and then decreases with crack propagation, peaking at different times under various joint angles; but most of them occur when the crack penetration ratio reaches 80–90%. With the increment of joint angles in specimens through the simulation software, the changing trend of peak stress is consistent with the test results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Claude Duhr ◽  
Falko Dulat ◽  
Bernhard Mistlberger

Abstract We present the production cross section for a lepton-neutrino pair at the Large Hadron Collider computed at next-to-next-to-next-to-leading order (N3LO) in QCD perturbation theory. We compute the partonic coefficient functions of a virtual W± boson at this order. We then use these analytic functions to study the progression of the perturbative series in different observables. In particular, we investigate the impact of the newly obtained corrections on the inclusive production cross section of W± bosons, as well as on the ratios of the production cross sections for W+, W− and/or a virtual photon. Finally, we present N3LO predictions for the charge asymmetry at the LHC.


Sign in / Sign up

Export Citation Format

Share Document