ATR Flow Blockage Tests and CFD Simulations

2000 ◽  
Author(s):  
Chang H. Oh ◽  
Steve A. Atkinson

Abstract Steady state flow channel blockage tests were conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the safety basis upgrade program for the Advanced Test Reactor (ATR). The tests were sponsored by the U.S. Department of Energy (DOE). This study was aimed at carrying out flow blockage tests, establishing a base case to compare test results with numerical results using a computational fluid dynamics code, calculating temperature profiles for blockage cases, and determining whether or not the ATR core would be exposed to core melting due to blockage of the inlet of a fuel cooling channel. The test section consisted of three parallel channels and two side channels along the side plate. Three cases were selected to evaluate flow blockage events in the channels. A base case with all the channels open, Case 1 where the inlet of the middle channel is blocked, and Case 2 where both the middle channel and the side channel are blocked. Laser Doppler anemometer (LDA) was used to measure velocities in the channel. Velocities were measured at 2.54-mm intervals in the channel width, and every 1.27-mm around side windows in the flow direction for three parallel channels. LDA measured velocity profiles for the base case and Case 1 indicated good agreement with predicted velocity profiles from the CFD model. The channel velocity in the blocked channel is about 70% of the velocity in the unblocked, adjacent channel in between the top and second side channel vents. Additional flow redistribution occurs into the blocked channel at the second side channel vent. Temperature calculations for the base case were made to compare with benchmark temperatures calculated with the ATR SINDA model and CFD calculations underpredicted benchmark plate temperatures by less than 10% while it predicted bulk temperatures very well. The same heat flux and boundary conditions were incorporated for Case 1 and Case 2. The results for both cases indicated that core melt would not occur in the postulated ATR flow channel blockage events simulated for this study. Peak fuel plate temperature is about 20% greater than the peak temperature for the unblocked case just upstream of the second side channel vent.

Author(s):  
Takayuki Mori ◽  
Risa Kimoto ◽  
Kenji Naganuma

Flow field around a marine propeller was measured by means of PIV technique in a large cavitation tunnel of the Naval Systems Research Center, TRDI/Ministry of Defense, Japan. Test section of the tunnel is 2m(W) × 2m(H) × 10m(L) and it contains 2000m3 of water. 2-dimensional PIV (2-D PIV) and stereo PIV (SPIV) measurements were made for a five-bladed highly skewed marine propeller. In the case of 2-D PIV measurements, high spatial resolution measurements were possible by seeding relatively small amount of tracer particles. Phase-averaged flow fields showed details on evolution of tip vortices. In the case of SPIV measurements, much larger amounts of tracer particles were required, and it was difficult to perform high resolution measurements. Phase averaged velocity profiles from SPIV measurements showed good agreement with 2-D PIV-measured results. PIV-measured results were compared with results of LDV measurements. Although PIV-measured velocity profiles showed fairly good agreements with LDV-measured results, some discrepancies were found at the blade tip region.


2018 ◽  
Vol 204 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Yuchuan Guo ◽  
Guanbo Wang ◽  
Dazhi Qian ◽  
Heng Yu ◽  
Bo Hu ◽  
...  

1996 ◽  
Vol 42 (142) ◽  
pp. 413-425 ◽  
Author(s):  
Øyvind Armand Høydal

Abstract Stresses and velocities at depth are calculated across Jutulstraumen, an ice stream in Dronning Maud Land, draining about 1% of the Antarctic ice sheet. The force-balance study is based on data from kinematic GPS measurements on three strain nets, each consisting of 3 × 3 stakes. The maximum measured velocity is 443 m a−1 and the velocity variation over short distances is large compared with studied ice streams in West Antarctica. The surface topography together with the measured velocities across the profile indicate that the bottom topography has a great influence on the flow direction, even where the ice thickness is more than 2000 m. The basal shear stresses are calculated as 180, 227 and 146 kPa in the three Strain nets, while the corresponding driving stresses are 180, 122 and 111 kPa (±5%). The heat produced by sliding and internal deformation is sufficient to keep the base at the pressure-melting point. The annual basal melting is estimated to be about 60 mm. Investigations on the effect of temperature softening show that the flow parameter’s influence on the effective strain rate is more important than the flow parameter’s direct softening in the flow low alone. The mass flow calculated by the force-balance method is between 87 and 96% of pure plug flow and total discharge is calculated to be 13.3 ± 10 km3a-1.


1995 ◽  
Vol 117 (4) ◽  
pp. 998-1002 ◽  
Author(s):  
R. Dowlati ◽  
M. Kawaji ◽  
I. D. Sardjono ◽  
S. T. Revankar

An experimental investigation has been conducted on critical heat flux (CHF) on a horizontal tube in crossflow boiling R-113 at near atmospheric pressures. Data were obtained over a range of fluid velocities (up to 0.52 m/s), heater diameters (8 to 12.7 mm), and flow blockage factors (D/H = 0.31 to 0.5). The effect of the flow blockage on CHF was examined in detail and compared with other data and existing correlations. No significant effect of flow blockage was observed for D/H up to 0.5. An analytical modification of the Katto-Haramura CHF correlation is proposed to take into account the effect of flow blockage over a wide range of D/H.


1998 ◽  
Vol 367 ◽  
pp. 67-105 ◽  
Author(s):  
STEPHEN A. ARNETTE ◽  
MO SAMIMY ◽  
GREGORY S. ELLIOTT

A fully developed Mach 3 turbulent boundary layer subjected to four expansion regions (centred and gradual expansions of 7° and 14°) was investigated with laser Doppler velocimetry. Measurements were acquired in the incoming flat-plate boundary layer and to s/δ≃20 downstream of the expansions. While mean velocity profiles exhibit significant progress towards recovery by the most downstream measurements, the turbulence structure remains far from equilibrium. Comparisons of computed (method of characteristics) and measured velocity profiles indicate that the post-expansion flow evolution is largely inviscid for approximately 10δ. Turbulence levels decrease across the expansion, and the reductions increase in severity as the wall is approached. Downstream of the 14° expansions, the reductions are more severe and reverse transition is indicated by sharp reductions in turbulent kinetic energy levels and a change in sign of the Reynolds shear stress. Dimensionless parameters such as anisotropy and shear stress correlation coefficient highlight the complex evolution of the post-expansion boundary layer. An examination of the compressible vorticity transport equation and estimates of the perturbation impulses attributable to streamline curvature, acceleration, and dilatation both confirm dilatation to be the primary stabilizer. However, the dilatation impulse increases only slightly for the 14° expansions, so the dramatic differences downstream of the 7° and 14° expansions indicate nonlinear boundary layer response. Differences attributable to the varied radii of surface curvature are fleeting for the 7° expansions, but persist through the spatial extent of the measurements for the 14° expansions.


1996 ◽  
Vol 314 ◽  
pp. 227-246 ◽  
Author(s):  
Philip A. J. Mees ◽  
K. Nandakumar ◽  
J. H. Masliyah

Steady developing flow of an incompressible Newtonian fluid in a curved duct of square cross-section (the Dean problem) is investigated both experimentally and numerically. This study is a continuation of the work by Bara, Nandakumar & Masliyah (1992) and is focused on flow rates between Dn = 200 and Dn = 600 (Dn = Re/(R/a)1/2, where Re is the Reynolds number, R is the radius of curvature of the duct and a is the duct dimension; the curvature ratio, R/a, is 15.1).Numerical simulations based on the steady three-dimensional Navier – Stokes equations predict the development of a 6-cell secondary flow pattern above a Dean number of 350. The 6-cell state consists of two large Ekman vortices and two pairs of small Dean vortices near the outer wall that result from the primary instability that is of centrifugal nature. The 6-cell flow state develops near θ = 80° and breaks down symmetrically into a 2-cell flow pattern.The apparatus used to verify the simulations had a duct dimension of 1.27 cm and a streamwise length of 270°. At a Dean number of 453, different velocity profiles of the 6-cell flow state at θ = 90° and spanwise profiles of the streamwise velocity at every 20° were measured using a laser-Doppler anemometer. All measured velocity profiles, as well as flow visualization of secondary flow patterns, are in very good agreement with the simulations, indicating that the parabolized Navier – Stokes equations give an accurate description of the flow.Based on the similarity with boundary layer flow over a concave wall (the Görtler problem), it is suggested that the transition to the 6-cell flow state is the result of a decreasing spanwise wavelength of the Dean vortices with increasing flow rate. A numerical stability analysis shows that the 6-cell flow state is unconditionally unstable. This is the first time that detailed experiments and simulations of the development of a 6-cell flow state are reported.


2015 ◽  
Vol 766 ◽  
pp. 556-589 ◽  
Author(s):  
B. Dollet ◽  
A. Scagliarini ◽  
M. Sbragaglia

AbstractIn order to understand the flow profiles of complex fluids, a crucial issue concerns the emergence of spatial correlations among plastic rearrangements exhibiting cooperativity flow behaviour at the macroscopic level. In this paper, the rate of plastic events in a Poiseuille flow is experimentally measured on a confined foam in a Hele-Shaw geometry. The correlation with independently measured velocity profiles is quantified by looking at the relationship between the localisation length of the velocity profiles and the localisation length of the spatial distribution of plastic events. To complement the cooperativity mechanisms studied in foam with those of other soft glassy systems, we compare the experiments with simulations of dense emulsions based on the lattice Boltzmann method, which are performed both with and without wall friction. Finally, unprecedented results on the distribution of the orientation of plastic events show that there is a non-trivial correlation with the underlying local shear strain. These features, not previously reported for a confined foam, lend further support to the idea that cooperativity mechanisms, originally invoked for concentrated emulsions (Goyon et al., Nature, vol. 454, 2008, pp. 84–87), have parallels in the behaviour of other soft glassy materials.


1973 ◽  
Vol 95 (2) ◽  
pp. 167-173
Author(s):  
A. K. Stiffler ◽  
J. L. Shearer

A free turbulent jet is perturbed transverse to the flow direction by a sinusoidal pressure gradient near the nozzle exit. Velocities in the jet are determined by hot wire anemometer measurements. Moving effective mean velocity profiles are defined and reconstructed from the point-by-point stationary measurements of the mean velocity and of the harmonic content of the time varying signal. The effective velocity profiles are described by the Gaussian distribution function where the spread parameter decays as the cube of the product of the excitation frequency and the downstream location from the nozzle. These profile measurements and analysis of their characteristics lead to a better understanding of the factors determining the gain of a fluidic amplifier under conditions of high frequency operation.


Author(s):  
Sang-Wook Lee ◽  
David A. Steinman

In image-based CFD modelling of carotid bifurcation hemodynamics, it is often not possible (or at least not convenient) to impose measured velocity profiles at the common carotid artery (CCA) inlet. Instead, fully-developed velocity profiles are usually imposed based on measured flow rates. Previous work from our group showed that this is reasonable [1], in the sense that errors made in doing so are substantially less than uncertainties inherent in the model construction process itself. In that study, long helical inlet sections were imposed to induce asymmetric (Dean-type) velocity flows profiles consistent with in vivo velocity profiles measured by others at the CCA [2, 3].


Sign in / Sign up

Export Citation Format

Share Document