Sensorless Detection of Cavitation in Centrifugal Pumps

Author(s):  
Parasuram P. Harihara ◽  
Alexander G. Parlos

Analysis of electrical signatures has been in use for some time for estimating the condition of induction motors, by extracting spectral indicators from motor current waveforms. In most applications, motors are used to drive dynamic loads, such as pumps, fans, and blowers, by means of power transmission devices, such as belts, couplers, gear-boxes. Failure of either the electric motors or the driven loads is associated with operational disruption. The large costs associated with the resulting idle equipment and personnel can often be avoided if the degradation is detected in its early stages prior to reaching failure conditions. Hence the need arises for cost-effective detection schemes not only for assessing the condition of the motor but also of the driven load. This prompts one to consider approaches that use no add-on sensors, in order to avoid any reduction in overall system reliability and increased costs. This paper presents an experimentally demonstrated sensorless approach to detecting varying levels of cavitation in centrifugal pumps. The proposed approach is sensorless in the sense that no mechanical sensors are required on either the pump or the motor driving the pump. Rather, onset of pump cavitation is detected using only the line voltages and phase currents of the electric motor driving the pump. Moreover, most industrial motor switchgear are equipped with potential transformers and current transformers which can be used to measure the motor voltages and currents. The developed fault detection scheme is insensitive to electric power supply and mechanical load variations. Furthermore, it does not require a priori knowledge of a motor or pump model or any detailed motor or pump design parameters; a model of the system is adaptively estimated on-line. The developed detection algorithm has been tested on data collected from a centrifugal pump connected to a 3 φ, 3 hp induction motor. Several cavitation levels are staged with increased severity. In addition to these staged pump faults, extensive experiments are also conducted to test the false alarm performance of the algorithm. Results from these experiments allow us to offer the conclusion that for the cases under consideration, the proposed model-based detection scheme reveals cavitation detection times that are comparable to those obtained from vibration analysis with a detection threshold that is significantly lower than used in industrial practice.

Author(s):  
Parasuram P. Harihara ◽  
Alexander G. Parlos

Induction motors are the workhorses of industry and a lot of effort has been invested in detecting and diagnosing induction motor faults through the analysis of the motor electrical signals. However, in many industrial applications, electric motors are used to drive dynamic loads such as pumps, fans, blowers etc. Failure of either the motors or the driven loads is associated with operational disruption. Consequently it would be beneficial if the entire motor-pump system is monitored and diagnosed. The large costs associated with production losses can be avoided if system degradation can be detected at early stages prior to failure. Moreover, downtime can be further reduced if the faulty component within the drive power system can be isolated thereby aiding plant personnel to be better prepared with spares and repair kits. Hence there is not only a strong need for cost-effective detection schemes to assess the condition of the drive power system as a whole, but also a strong need for efficient isolation schemes to identify the component within the system that is faulty. This paper describes a sensorless approach to detect and isolate induction motor and/or centrifugal pump faults. Motor and pump bearing degradation is considered to validate the performance effectiveness of the proposed scheme. No add-on sensors, on either the motor or the pump, are used in the development of the proposed method to avoid any reduction in overall system reliability and prevent increased costs. In fact, motor and/or pump bearing degradation is detected and isolated using only the motor line voltages and phase currents. The proposed technique is insensitive to electric power supply fluctuations and mechanical load variations and it does not require prior knowledge of either the motor or the pump design parameters. Hence this approach can be easily ported to motor-pump systems of varying manufacturers and sizes. The developed algorithm has been tested on accelerated fault data collected from a centrifugal pump fluid loop driven by a 3-φ, 3 hp induction motor. Results from these experiments indicate that the proposed fault detection and isolation scheme successfully detects and classifies bearing degradation in the motor and/or the pump without false positives or misclassification.


Author(s):  
Parasuram P. Harihara ◽  
Alexander G. Parlos

Electrical signal analysis has been in use for quite some time to detect and diagnose induction motor faults. In most industrial applications, induction motors are used to drive dynamic loads such as pumps, compressors, fans, etc. Failure of either the motors or the driven loads results in an unscheduled downtime which in turn leads to loss of production. These operational disruptions could be avoided if the equipment degradation is detected in its early stages prior to reaching catastrophic failure conditions. Hence the need arises for cost-effective detection schemes not only for assessing the condition of electric motors but also the driven loads. This paper presents an experimentally demonstrated sensor-less approach to detect impeller cracks in centrifugal pumps. The proposed method is sensorless in the sense that it does not use any mechanical and/or process pump sensors to detect impeller faults. Rather motor electrical measurements are used for the intended purpose. Mechanical sensors have high costs and low reliability, and frequently fail more often than the system being monitored. Hence add-on mechanical sensors reduce the overall system reliability. In this study, fault detection is accomplished using only the line voltages and phase currents of the electric motor driving the pump. The developed detection algorithm is insensitive to electrical power supply and load variations. Furthermore, it does not require prior knowledge of either a motor or the pump model or design parameters and hence the detection algorithm can be easily ported to motor-pump systems of varying manufacturers and sizes. The proposed fault detection scheme has been tested on data collected from a centrifugal pump driven by a 3-φ, 3 hp induction motor. Several cracks on the pump impeller are staged to validate the detection effectiveness of the proposed scheme and compare its effectiveness with respect to continuous vibration monitoring. In addition to these staged faults, experiments are also conducted to demonstrate the prevention of false alarms by the algorithm. Results from all of these experiments are presented to substantiate the performance of the sensorless pump fault detection scheme.


2020 ◽  
Author(s):  
Christos Saragiotis ◽  
Ivan Kitov

<p>Two principal performance measures of the International Monitoring System (IMS) stations detection capability are the rate of automatic detections associated with events in the Reviewed Event Bulletin (REB) and the rate of detections manually added to the REB. These two metrics roughly correspond to the precision (which is the complement of the false-discovery rate) and miss rate or false-negative rate statistical measures of a binary classification test, respectively. The false-discovery and miss rates are clearly significantly influenced by the number of phases detected by the detection algorithm, which in turn depends on prespecified slowness-, frequency- and azimuth- dependent threshold values used in the short-term average over long-term average ratio detection scheme of the IMS stations. In particular, the lower the threshold, the more the detections and therefore the lower the miss rate but the higher the false discovery rate; the higher the threshold, the less the detections and therefore the higher the miss rate but also the lower the false discovery rate. In that sense decreasing both the false-discovery rate and the miss rate are conflicting goals that need to be balanced. On one hand, it is essential that the miss rate is as low as possible since no nuclear explosion should go unnoticed by the IMS. On the other hand, a high false-discovery rate compromises the quality of the automatically generated event lists and adds heavy and unnecessary workload to the seismic analysts during the interactive processing stage.</p><p>A previous study concluded that a way to decrease both the miss and false-discovery rates as well as the analyst workload is to increase the retiming interval, i.e., the maximum allowable time that an analyst is allowed to move an arrival pick without having to declare a new arrival. Indeed, when a detection needs to be moved by an interval larger than the retiming interval, not only is this a much more time-consuming task for the analyst than just retiming it, but it also affects negatively both the associated rate (the automatic detection is deleted and therefore not associated to an event) and the added rate (a new arrival has to be added to arrival list). The International Data Centre has increased the retiming interval from 4 s to 10 s since October 2018. We show how this change affected the associated-detections and added-detections rates and how the values of these metrics can be further improved by tuning the detection threshold levels.</p>


2001 ◽  
Author(s):  
Noah D. Manring

Abstract The objectives of this research are to determine the physical contributors that tend to separate the slippers from the swash plate within an axial-piston pump. Upon determining these contributors, the hold-down force that is required for maintaining contact between the slippers and the swash plate is determined. This force is then expressed in terms of pump design-parameters and operating conditions. Physically inspecting six industrial pumps and measuring the theoretical calculations against the a-posteriori results of successful pump designs validates the analytical results of this research. By confirming the analysis of this research, an a-priori approach is recommended for adequately specifying the required spring load for the slipper hold-down mechanism.


Author(s):  
Nikolay S. Shulaev ◽  
◽  
Valeriya V. Pryanichnikova ◽  
Ramil R. Kadyrov ◽  
Inna V. Ovsyannikova ◽  
...  

The most essential scientifific and practical task in the area of ecological safety of pipelines operation is the development and improvement of methods of purifification and restoration of oil-contaminated soils. One of the most effificient and cost effective methods is electrochemical purifification, that does not require the use of expensive chemical reagents and soil excavation. However, the consideration of non-uniform contamination of various soil sections is required. The article examines the features of the organization and technological infrastructure for electrochemical purifification of non-uniformly contaminated soils when using a single electrical energy source, a method for calculating the design parameters of the corresponding installation is proposed. Effificient purifification of non-uniformly contaminated soil when using a specifified voltage is possible through the use of different-sized electrodes. For each soil type, the amount of transmitted electric charge required for soil purifification is determined by the concentration of the contaminant. Allocation of cathodes and anodes as parallel batteries and their connection using individual buses is an effective and energy-effificient solution, since an almost-uniform electric fifield is created in an inter-electrode space, thus allowing the reduction of the interelectrode resistance of the medium.


2020 ◽  
Vol 16 (2) ◽  
pp. 280-289
Author(s):  
Ghalib H. Alshammri ◽  
Walid K. M. Ahmed ◽  
Victor B. Lawrence

Background: The architecture and sequential learning rule-based underlying ARFIS (adaptive-receiver-based fuzzy inference system) are proposed to estimate and predict the adaptive threshold-based detection scheme for diffusion-based molecular communication (DMC). Method: The proposed system forwards an estimate of the received bits based on the current molecular cumulative concentration, which is derived using sequential training-based principle with weight and bias and an input-output mapping based on both human knowledge in the form of fuzzy IFTHEN rules. The ARFIS architecture is employed to model nonlinear molecular communication to predict the received bits over time series. Result: This procedure is suitable for binary On-OFF-Keying (Book signaling), where the receiver bio-nanomachine (Rx Bio-NM) adapts the 1/0-bit detection threshold based on all previous received molecular cumulative concentrations to alleviate the inter-symbol interference (ISI) problem and reception noise. Conclusion: Theoretical and simulation results show the improvement in diffusion-based molecular throughput and the optimal number of molecules in transmission. Furthermore, the performance evaluation in various noisy channel sources shows promising improvement in the un-coded bit error rate (BER) compared with other threshold-based detection schemes in the literature.


Author(s):  
Kazuaki Yazawa ◽  
Yee Rui Koh ◽  
Ali Shakouri

Thermoelectric (TE) generators have a potential advantage of the wide applicable temperature range by a proper selection of materials. In contrast, a steam turbine (ST) as a Rankine cycle thermodynamic generator is limited up to more or less 630 °C for the heat source. Unlike typical waste energy recovery systems, we propose a combined system placing a TE generator on top of a ST Rankine cycle generator. This system produces an additional power from the same energy source comparing to a stand-alone steam turbine system. Fuel efficiency is essential both for the economic efficiency and the ecological friendliness, especially for the global warming concern on the carbon dioxide (CO2) emission. We report our study of the overall performance of the combined system with primarily focusing on the design parameters of thermoelectric generators. The steam temperature connecting two individual generators gives a trade-off in the system design. Too much lower the temperature reduces the ST performance and too much higher the temperature reduces the temperature difference across the TE generator hence reduces the TE performance. Based on the analytic modeling, the optimum steam temperature to be designed is found near at the maximum power design of TE generator. This optimum point changes depending on the hours-of-operation. It is because the energy conversion efficiency directly connects to the fuel consumption rate. As the result, physical upper-limit temperature of steam for ST appeared to provide the best fuel economy. We also investigated the impact of improving the figure-of-merit (ZT) of TE materials. As like generic TE engines, reduction of thermal conductivity is the most influential parameter for improvement. We also discuss the cost-performance. The combined system provides the payback per power output at the initial and also provides the significantly better energy economy [$/KWh].


Perfusion ◽  
2016 ◽  
Vol 32 (4) ◽  
pp. 264-268
Author(s):  
D. Scott Lawson ◽  
Derek Eilers ◽  
Suzanne Osorio Lujan ◽  
Maria Bortot ◽  
James Jaggers

Background: Current blood pumps used for cardiopulmonary bypass generally fall into two different pump design categories; non-occlusive centrifugal pumps and occlusive, positive-displacement roller pumps. The amount of foreign surface area of extracorporeal circuits correlates with post-operative morbidity due to systemic inflammation, leading to a push for technology that reduces the amount of foreign surfaces. Current roller pumps are bulky and the tubing forms an arc in the pumping chamber (raceway), positioning the inlet 360 degrees from the outlet, making it very difficult to place the pump closer to the patient and to efficiently reduce tubing length. These challenges put existing roller pumps at a disadvantage for use in a compact cardiopulmonary bypass circuit. Centrifugal blood pumps are easier to incorporate into miniature circuit designs. However, the prime volumes of current centrifugal pump designs are large, especially for pediatric extracorporeal circuits where the prime volumes are too great to be of clinical value. Method: We describe a preliminary report on a novel, occlusive, linear, single-helix, positive-displacement blood pump which allows for decreased prime volume and surface area of the extracorporeal circuit. This new experimental pump design was used to perfuse a 6 kilogram piglet with a pediatric cardiopulmonary bypass circuit for two hours of continuous use. Blood samples were obtained every thirty minutes and assayed for plasma free hemolysis generation. Conclusions: The results from this initial experiment showed low plasma free hemoglobin generation and encourages the authors to further develop this concept.


Author(s):  
I.F. Lozovskiy

The use of broadband souding signals in radars, which has become real in recent years, leads to a significant reduction in the size of resolution elements in range and, accordingly, in the size of the window in which the training sample is formed, which is used to adapt the detection threshold in signal detection algorithms with a constant level of false alarms. In existing radars, such a window would lead to huge losses. The purpose of the work was to study the most rational options for constructing detectors with a constant level of false alarms in radars with broadband sounding signals. The problem was solved for the Rayleigh distribution of the envelope of the noise and a number of non-Rayleigh laws — Weibull and the lognormal, the appearance of which is associated with a decrease in the number of reflecting elements in the resolution volume. For Rayleigh interference, an algorithm is proposed with a multi-channel in range incoherent signal amplitude storage and normalization to the larger of the two estimates of the interference power in the range segments. The detection threshold in it adapts not only to the interference power, but also to the magnitude of the «power jump» in range, which allows reducing the number of false alarms during sudden changes in the interference power – the increase in the probability of false alarms did not exceed one order of magnitude. In this algorithm, there is a certain increase in losses associated with incoherent accumulation of signals reflected from target elements, and losses can be reduced by certain increasing the size of the distance segments that make up the window. Algorithms for detecting broadband signals against interference with non-Rayleigh laws of distribution of the envelope – Weibull and lognormal, based on the addition of the algorithm for detecting signals by non-linear transformation of sample counts into counts with a Rayleigh distribution, are studied. The structure of the detection algorithm remains unchanged in practice. The options for detectors of narrowband and broadband signals are considered. It was found that, in contrast to algorithms designed for the Rayleigh distribution, these algorithms provide a stable level of false alarms regardless of the values of the parameters of non-Rayleigh interference. To reduce losses due to interference with the distribution of amplitudes according to the Rayleigh law, detectors consisting of two channels are used, in which one of the channels is tuned for interference with the Rayleigh distribution, and the other for lognormal or Weibull interference. Channels are switched according to special distribution type recognition algorithms. In such detectors, however, there is a certain increase in the probability of false alarms in a rather narrow range of non-Rayleigh interference parameters, where their distribution approaches the Rayleigh distribution. It is shown that when using broadband signals, there is a noticeable decrease in detection losses in non-Rayleigh noise due to lower detection thresholds for in range signal amplitudes incoherent storage.


2021 ◽  
Author(s):  
Sebastian F. Riebl ◽  
Christian Wakelam ◽  
Reinhard Niehuis

Abstract Turbine Vane Frames (TVF) are a way to realize more compact jet engine designs. Located between the high pressure turbine (HPT) and the low pressure turbine (LPT), they fulfill structural and aerodynamic tasks. When used as an integrated concept with splitters located between the structural load-bearing vanes, the TVF configuration contains more than one type of airfoil with sometimes pronouncedly different properties. This system of multidisciplinary demands and mixed blading poses an interesting opportunity for optimization. Within the scope of the present work, a full geometric parameterization of a TVF with splitters is presented. The parameterization is chosen as to minimize the number of parameters required to automatically and flexibly represent all blade types involved in a TVF row in all three dimensions. Typical blade design parameters are linked to the fourth order Bézier-curve controlled camber line-thickness parameterization. Based on conventional design rules, a procedure is presented, which sets the parameters within their permissible ranges according to the imposed constraints, using a proprietary developed code. The presented workflow relies on subsequent three dimensional geometry generation by transfer of the proposed parameter set to a commercially available CAD package. The interdependencies of parameters are discussed and their respective significance for the adjustment process is detailed. Furthermore, the capability of the chosen parameterization and adjustment process to rebuild an exemplary reference TVF geometry is demonstrated. The results are verified by comparing not only geometrical profile data, but also validated CFD simulation results between the rebuilt and original geometries. Measures taken to ensure the robustness of the method are highlighted and evaluated by exploring extremes in the permissible design space. Finally, the embedding of the proposed method within the framework of an automated, gradient free numerical optimization is discussed. Herein, implications of the proposed method on response surface modeling in combination with the optimization method are highlighted. The method promises to be an option for improvement of optimization efficiency in gradient free optimization of interdependent blade geometries, by a-priori excluding unsuitable blade combinations, yet keeping restrictions to the design space as limited as possible.


Sign in / Sign up

Export Citation Format

Share Document