Design and Evaluation of MEMS-Based Stirling Cycle Micro-Refrigeration System

Author(s):  
Dongzhi Guo ◽  
Jingsheng Gao ◽  
Alan J. H. McGaughey ◽  
Matthew Moran ◽  
Suresh Santhanam ◽  
...  

A Stirling cycle micro-refrigeration system composed of arrays of silicon MEMS cooling elements has been designed and evaluated thermodynamically. The cooling elements are each 5 mm-long, 2.25 mm-wide, have a thickness of 300 μm, and are fabricated in a stacked array on a silicon wafer. A 0.5 mm-long regenerator is placed between the compression (hot side) and expansion (cold side) diaphragms. The diaphragms are 2.25 mm circles driven electrostatically. Helium is the working fluid, pressurized at 2 bar and sealed in the system. Under operating conditions, the hot and cold diaphragms oscillate sinusoidally 90° out of phase such that heat is extracted to the expansion space and released from the compression space. The bulk silicon substrate on which the device is grown is etched with “zipping” shaped chambers under the diaphragms. The silicon enables efficient heat transfer between the gas and heat source/sink as well as reduces the dead volume of the system, thus enhancing the cooling capacity. In addition, the “zipping” shaped substrates reduce the voltage required to actuate the diaphragms. An array of vertical silicon pillars in the regenerator serves as a thermal capacitor transferring heat to and from the working gas during a cycle. In operation, the push-pull motion of the diaphragm makes a 300 μm stroke and actuates at a frequency of 2 kHz. Parametric study of the design shows the effects of phase lag, swept volume ratio between the hot space and cold space, and dead volume ratio on cooling capacity. At TH = 313.15 K and TC = 288.15 K and assuming a perfect regenerator, the thermodynamic optimization analysis gives a heat extraction rate of 0.22 W per element and cooling capacity of 30 W/cm2 for the stacked system. Evaluation of the stacked system shows that the COP will reach 6.3 if the expansion work from the cold side is recovered electrostatically and used to drive the hot side diaphragm.

2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Dongzhi Guo ◽  
Jinsheng Gao ◽  
Alan J. H. McGaughey ◽  
Gary K. Fedder ◽  
Matthew Moran ◽  
...  

A new Stirling microrefrigeration system composed of arrays of silicon MEMS cooling elements has been designed and evaluated. The cooling elements are to be fabricated in a stacked array on a silicon wafer. A regenerator is placed between the compression (hot side) and expansion (cold side) diaphragms, which are driven electrostatically. Air at a pressure of 2 bar is the working fluid and is sealed in the system. Under operating conditions, the hot and cold diaphragms oscillate sinusoidally and out of phase such that heat is extracted to the expansion space and released from the compression space. Parametric study of the design shows the effects of phase lag between the hot space and cold space, swept volume ratio between the hot space and cold space, and dead volume ratio on the cooling power. Losses due to regenerator nonidealities are estimated and the effects of the operating frequency and the regenerator porosity on the cooler performance are explored. The optimal porosity for the best system coefficient of performance (COP) is identified.


2014 ◽  
Vol 501-504 ◽  
pp. 2282-2287 ◽  
Author(s):  
Yu Hang Liao ◽  
Wei Lu ◽  
Lie Pan

The performance of a solar-driven air-cooled ejector refrigeration system using ammonia as refrigerant with rated cooling capacity of 10.5kW was analyzed for air-conditioning purpose. The cooling capacity of the proposed system increases with the rising of indoor temperature and enhancement of solar irradiance, while decreases with the rising of outdoor temperature. The COP has similar changing trend with that of the cooling capacity except that it increases rapidly with the enhancement of solar irradiance firstlyand then become stable by and large after solar irradiance exceeding a certain value. The cooling capacity is 6.3~52kW and the COP 0.06~0.11 under the normal operating conditions with indoor temperature over 27, outdoor temperature below 38°C and solar irradiance surpassing 500 W/m2. The proposed system can match the climatic conditions in air-conditioning season of Nanning, a typical city in hot summer and warm winter region.


1981 ◽  
Vol 23 (4) ◽  
pp. 207-216 ◽  
Author(s):  
A. J. Organ

The Stirling cycle machine is modelled as a number of sections of duct in series, some tapered, some parallel. The working fluid assumes the temperature of the adjacent metal wall. Flow is defined by two conservation equations (mass and momentum) and the equation of state, p = ρRT. Friction is taken into account by using the steady-state correlation between friction factor, local instantaneous Reynolds number, and local hydraulic radius. The formulation permits frictional drag and frictional reheating to interact more or less as they do during operation of a Stirling cycle machine at high rotational speeds. The equations are converted to characteristic form and solved numerically with pressure, p, and velocity, u, as state variables rather than the more usual a (acoustic speed) and u. This formulation paves the way for a full characteristics solution incorporating the energy equation but avoiding the entropy gradient term ∂s/∂x which is inappropriate to conditions within the Stirling machine. The paper includes a Mach-line net plotted by computer for the first revolutions of the crankshaft after start-up. Indicator diagrams are presented corresponding to different angular speeds. It is found that the indicator diagram for the compression space is not greatly affected by angular speed, while that for the expansion space changes from positive, via figure-of-eight to negative over a relatively narrow speed range. An attempt is made to explain this unexpected finding in terms of the momentum equation for constant area flow with a severe temperature gradient. A comparison is included between the computed results and those predicted for the same operating conditions by the Schmidt isothermal analysis.


2013 ◽  
Vol 14 (1) ◽  
Author(s):  
A. B. Kasaeian ◽  
S. Daviran

In this study, a new model of a solar combined ejector-vapor compression refrigeration system has been considered. The system is equipped with an internal heat exchanger to enhance the performance of the cycle. The effects of working fluid and operating conditions on the system performance including COP, entrainment ratio (ω), compression ratio (rp) and exergy efficiency were investigated. Some working fluids suggested are: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e) and R1234ze(z). The results show that R114 and R1234ze(e) yield the highest COP and exergy efficiency followed by R123, R245fa, R365mfc, R141b, R152a and R600a. It is noticed that the COP value of the new solar ejector-vapor compression refrigeration cycle is higher than that of the conventional ejector cycle with R1234ze(e) for all operating conditions. This paper also demonstrates that R1234ze(e) will be a suitable refrigerant in the solar combined ejector-vapor compression refrigeration system, due to its environmental friendly properties and better performance. ABSTRAK: Kajian ini menganalisa model baru sistem penyejukan mampatan gabungan ejektor-wap solar.Sistem ini dilengkapi dengan penukar haba dalaman untuk meningkatkan prestasi kitaran.Kesan bendalir bekerja dan keadaan operasi pada prestasi sistem termasuk COP, nisbah pemerangkapan (ω), nisbah mampatan (rp) dan kecekapan eksergi telah disiasat.Beberapa bendalir bekerja yang dicadangkan adalah: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e) dan R1234ze(z).Hasil kajian menunjukkan R114 dan R1234ze(e) menghasilkan COP dan kecekapan eksergi tertinggi diikuti oleh R123, R245fa, R365mfc, R141b, R152a dan R600a.Didapati nilai COP kitaran penyejukan mampatan bagi ejektor-wap solar baru adalah lebih tinggi daripada kitaran ejektor konvensional dengan R1234ze(e) bagi semua keadaan operasi.Kertas kerja ini juga menunjukkan bahawa R1234ze(e) boleh menjadi penyejuk yang sesuai dalam sistem penyejukan mampatan gabungan ejektor -wap solar, kerana ianya mempunyai prestasi yang lebih baik serta sifatnya yang lebih mesra alam sekitar. KEYWORDS: environmental friendly refrigerants; solar combined ejector-vapor compression cycle; R1234ze(e)


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5991
Author(s):  
Christian J. L. Hermes ◽  
Joel Boeng ◽  
Diogo L. da Silva ◽  
Fernando T. Knabben ◽  
Andrew D. Sommers

Modern refrigerators are equipped with fan-supplied evaporators often tailor-made to mitigate the impacts of frost accretion, not only in terms of frost blocking, which depletes the cooling capacity and therefore the refrigerator coefficient of performance (COP), but also to allow optimal defrosting, thereby avoiding the undesired consequences of condensate retention and additional thermal loads. Evaporator design for frosting conditions can be done either empirically through trial-and-error approaches or using simulation models suitable to predict the distribution of the frost mass along the finned coil. Albeit the former is mandatory for robustness verification prior to product approval, it has been advocated that the latter speeds up the design process and reduces the costs of the engineering undertaking. Therefore, this article is aimed at summarizing the required foundations for the design of efficient evaporators and defrosting systems with minimized performance impacts due to frosting. The thermodynamics, and the heat and mass transfer principles involved in the frost nucleation, growth, and densification phenomena are presented. The thermophysical properties of frost, such as density and thermal conductivity, are discussed, and their relationship with refrigeration operating conditions are established. A first-principles model is presented to predict the growth of the frost layer on the evaporator surface as a function of geometric and operating conditions. The relation between the microscopic properties of frost and their macroscopic effects on the evaporator thermo-hydraulic performance is established and confirmed with experimental evidence. Furthermore, different defrost strategies are compared, and the concept of optimal defrost is formulated. Finally, the results are used to analyze the efficiency of the defrost operation based on the net cooling capacity of the refrigeration system for different duty cycles and evaporator geometries.


2019 ◽  
Vol 969 ◽  
pp. 199-204
Author(s):  
Shaik Mohammad Hasheer ◽  
Kolla Srinivas

Now a days R134a can be used in domestic refrigerators and in air conditioning of automobiles. As per Kyoto protocol the usage of R134a is restricted due to their higher GWP value. The GWP value of this refrigerant is around 1430. So in this article, thermodynamic analysis of HFC-152a, HFO refrigerants-1234ze(E) and 1234yf was done in a household refrigeration system as direct substitute to HFC-134a.The performance of the household refrigerator was compared in terms of outlet temperature of the compressor, volumetric cooling capacity (VCC), refrigeration effect, work done by the compressor and coefficient of performance (COP). The entire analysis is carried out at various operating conditions of condenser and evaporator temperatures i.e. condensation temperature of 25°C,35°C & 45°C and evaporating temperatures ranging between −20°C to 10°C.From the theoretical results, it can be concluded that R1234yf can be used as a direct substitute to R134a.


Author(s):  
Mehmet Altinkaynak

Abstract According to the regulation of European Union laws in 2014, it was inevitable to switch to low global warming potential (GWP) fluids in the refrigeration systems where the R404A working fluid is currently used. The GWP of R404A is very high, and the potential for ozone depletion is zero. In this study, energetic and exergetic performance assessment of a theoretical refrigeration system was carried out for R404 refrigerant and its alternatives, comparatively. The analyses were made for R448A, R449A, R452A and R404A. The results of the analysis were presented separately in the tables and graphs. According to the results, the cooling system working with R448A exhibited the best performance with a coefficient of performance (COP) value of 2.467 within the alternatives of R404A followed by R449A and R452A, where the COP values were calculated as 2.419 and 2.313, respectively. In addition, the exergy efficiencies of the system were calculated as 20.62%, 20.22% and 19.33% for R448A, R449A and R452A, respectively. For the base calculations made for R404A, the COP of the system was estimated as 2.477, where the exergy efficiency was 20.71%. Under the same operating conditions, the total exergy destruction rates for R404A, R448A, R449A and R452A working fluids were found to be 3.201 kW, 3.217 kW, 3.298 kW and 3.488 kW, respectively. Furthermore, parametric analyses were carried out in order to investigate the effects of different system parameters such as evaporator and condenser temperature.


2021 ◽  
Vol 26 (3) ◽  
pp. 119-130
Author(s):  
R.A. Mahmood ◽  
O.M. Ali ◽  
A. Al-Janabi ◽  
G. Al-Doori ◽  
M.M. Noor

Abstract Reducing energy consumption and providing high performance for a vapour compression refrigeration system are big challenges that need more attention and investigation. This paper provides an extensive review of experimental and theoretical studies to present the vapour compression refrigeration system and its modifications that can be used to improve system’s performance and reduce its energy consumption. This paper also presents the challenges that can be considered as a gab of research for the future works and investigations. Cooling capacity, refrigerant effect, energy consumption can be improved by using vapour injection technique, natural working fluid, and heat exchanger. Based on the outcome of this paper, vapour injection technique using natural refrigerant such as water can provide ultimate friendly refrigeration system. Future vision for the vapour compression refrigeration system and its new design technique using Computational Fluid Dynamic (CFD) is also considered and presented.


Author(s):  
Arun Kumar Narasimhan ◽  
Diego Guillen Perez ◽  
D. Yogi Goswami

Abstract Scroll expanders are generally used for low temperature power generation applications due to their inherently small built-in volume ratio. The working fluid and operating conditions play an important role in the expander performance as well as its physical size and volume ratio. Hence, a comparative study of scroll expander performance was carried out between two different working fluids, R433C and supercritical (s-CO2). The s-CO2 Brayton cycle achieved a maximum cycle efficiency of 13.6% at an expander supply pressure of 11 MPa. Two separate scroll geometries were modeled for supercritical Organic Rankine Cycle (SORC) using R433C and s-CO2 Brayton cycle for the operating conditions that provided the maximum cycle performance. The s-CO2 scroll geometry achieved a maximum expander efficiency of 80% with a volume ratio of 2.5 and a diameter of 19 cm. The high inlet temperatures required a much higher volume ratio of 6.2 and scroll diameter of 30 cm for the R433C based SORC leading to greater leakages and lower expander efficiency of 62%. The comparative study shows that s-CO2 is better suited for scroll expander than R433C at such high expander supply temperatures.


1996 ◽  
Vol 118 (2) ◽  
pp. 120-127 ◽  
Author(s):  
L. Bauwens

The Stirling cycle has been used very effectively in cryocoolers; but efficiencies relative to the Carnot limit are typically observed to peak for absolute temperature rations of about two, which makes it less suitable for low-lift refrigeration. The adiabatic loss appears to be responsible for poor performance at small temperature differences. In this paper, adiabatic losses are evaluated, for a temperature ratio of 2/3, taking into account the effect of phase angle between pistons, of volume ratio, of the distribution of the dead volume necessary of reduce the volume ration, and of the distribution of displacement between expansion and compression spaces. The study is carried out numerically, using an adiabatic stirling engine model in which cylinder flow is assumed to be stratified. Results show that the best location for the cylinder dead volume is on the compression side. Otherwise, all strategies used to trade off refrigeration for coefficient of performance are found to be roughly equivalent.


Sign in / Sign up

Export Citation Format

Share Document