Experimental and Numerical Investigations of Stacking Sequence Effect on GLARE 5 FML Plates Subjected to Ballistic Impact

Author(s):  
A. Seyed Yaghoubi ◽  
B. Liaw

In this study, GLARE 5 (3/2) fiber-metal laminated (FML) plates of dimensions: 152.4 mm × 101.6 mm with various stacking sequences, namely: unidirectional [0°4], cross-ply [0°/90°]s, angle-ply [+45°/−45°]s and quasi-isotropic [0°/±45°/90°], were impacted by a 0.22 caliber bullet-shaped projectile using a high-speed gas gun. A high-speed camera was used to measure the projectile velocity along its ballistic trajectory. The post-impact damage in the specimens was evaluated using both nondestructive and destructive techniques. The nondestructive assessment was conducted using an UltraPAC immersion ultrasound system; whereas for the destructive technique the specimens were cut transversely along the impact center using a diamond blade cutting wheel. The results showed that the induced damage in the specimens changed its shape as the prepreg lay-up orientation was altered. The 3D dynamic nonlinear finite element (FE) software, LS-DYNA, was used to validate the experimental results. Good agreement between experimental and FE results was obtained.

Author(s):  
A. Seyed Yaghoubi ◽  
B. Liaw

GLARE 5 fiber-metal laminated (FML) plates of dimensions: 152.4 mm × 101.6 mm with various thicknesses, ranging from 1.12 mm up to 4.37 mm, were impacted by a 0.22 caliber bullet-shaped projectile using a high-speed gas gun. A high-speed camera was used to measure the projectile velocity along its ballistic trajectory. The post-impact damage characteristics were evaluated using both nondestructive ultrasonic and destructive mechanical sectioning techniques. Only the contour of the entire damage area could be obtained using ultrasonic C-scan; whereas more details of the damage were provided through the mechanical cross-sectioning technique. As expected, thicker GLARE 5 offered higher impact resistance. It was found that by increasing the specimen thickness, the damage contour increased. In addition, the results showed that for a given specimen thickness, the damage contour was maximized near its ballistic limit velocity. The 3D dynamic nonlinear finite element (FE) software, LS-DYNA, was used to validate the experimental results. Good agreement between experimental and FE results was obtained.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2591
Author(s):  
Vasudevan Alagumalai ◽  
Vigneshwaran Shanmugam ◽  
Navin Kumar Balasubramanian ◽  
Yoganandam Krishnamoorthy ◽  
Velmurugan Ganesan ◽  
...  

The present study is aimed at investigating the effect of hybridisation on Kevlar/E-Glass based epoxy composite laminate structures. Composites with 4 mm thickness and 16 layers of fibre (14 layers of E-glass centred and 2 outer layers of Kevlar) were fabricated using compression moulding technique. The fibre orientation of the Kevlar layers had 3 variations (0, 45 and 60°), whereas the E-glass fibre layers were maintained at 0° orientation. Tensile, flexural, impact (Charpy and Izod), interlaminar shear strength and ballistic impact tests were conducted. The ballistic test was performed using a gas gun with spherical hard body projectiles at the projectile velocity of 170 m/s. The pre- and post-impact velocities of the projectiles were measured using a high-speed camera. The energy absorbed by the composite laminates was further reported during the ballistic test, and a computerised tomographic scan was used to analyse the impact damage. The composites with 45° fibre orientation of Kevlar fibres showed better tensile strength, flexural strength, Charpy impact strength, and energy absorption. The energy absorbed by the composites with 45° fibre orientation was 58.68 J, which was 14% and 22% higher than the 0° and 60° oriented composites.


Author(s):  
Danish Iqbal ◽  
Vikrant Tiwari

Detailed experimental and numerical investigations were carried out for evaluating the dynamic response of the stacked target plates toward moderate (100–250 m/s) velocity projectile impact. A single stage gas gun was utilized to launch the hemispherical and the blunt projectile toward two different hetro-stacked configurations (Al-St and St-Al). A comprehensive experimental (high speed 3D-DIC) and numerical (FE) evaluation was conducted to obtain the transient and post-impact behavior of the target plates. Influence of different projectile shapes on the full-field transient deformation profiles of different stacking configurations was studied in detail. Also, typical perforation parameters like plug size, shape, and perforation hole diameters were carefully measured and analyzed. A comprehensive error measure was utilized to quantify the similarity between the experimental and simulation results, a very good agreement was observed.


2019 ◽  
Vol 8 (4) ◽  
pp. 527
Author(s):  
Banan Hasani Monfared ◽  
Alireza Sedaghat

Fiber is not sensitive to fatigue in some fiber-metal multilayers. They leave a large part of the load through the cracks and prevent the crack from opening. Due to this prevention, the opening in GLARE is less than that of the metals. Unlike what is observed in metals, concentration factor of crack tip is not fully influenced by increase in crack length. Hence, this study uses the experimental method to examine post-impact fatigue behavior of glass fiber-reinforced metal composites, known as GLARE. The GLARE made in this study was produced by autoclave in three types of GLARE 1.2-3, GLARE 1.2-4 and GLARE 3.2-5 and was exposed to impact test by different forces and then fatigue test with different cycles. The results were studied. The results showed that the first GLARE 1.2-3 specimen was completely pierced after the impact test. The second GLARE 1.2-3 specimen produced fatigue cracks from impact dent in the only aluminum impacted layer. These cracks were then amplified to the edge of the specimen. Both GLARE 1.2-4 specimens showed approximately equal fatigue life. The first GLARE 1.2-4 specimen failed near the radius due to the disturbing cracks in a way that is common in FML specimen. Moreover, both GLARE 1.2-4 specimens exhibited cracking in both aluminum layers. In 1.2-5 GLARE, both specimens showed a decrease in fatigue life and increase in impact energy.  


2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


2017 ◽  
Vol 2 (4) ◽  
pp. 25
Author(s):  
L. A. Montoya ◽  
E. E. Rodríguez ◽  
H. J. Zúñiga ◽  
I. Mejía

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.


2018 ◽  
Vol 38 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Gaye Kaya

This study aims to compare the low-velocity impact and post-impact properties of intra-ply hybrid carbon/E-glass/polypropylene non-crimp thermoplastic composites with non-hybrid carbon/PP and E-glass/PP non-crimp thermoplastic composites. Impact test was performed at four energy levels as 15 J, 30 J, 45 J and 60 J. Post-impact properties of hybrid thermoplastic composites were tested by compression after impact method for each energy level to understand the impact damage tolerance of intra-ply hybrid carbon/E-glass/PP non-crimp thermoplastic composites. The effect of hybridization on energy absorption of composites was not significant, while C-scan results showed that the intra-ply hybrid non-crimp thermoplastic composites had smaller impact damage areas in comparison to the non-hybrid samples. Compression and compression after impact tests results confirmed that the intra-ply hybridization increased the toughness of the composite laminates. Also, the residual compression strength/modulus increased with hybridization which indicated to damage tolerance.


Author(s):  
E. Sevkat ◽  
B. M. Liaw ◽  
F. Delale ◽  
B. B. Raju

This paper presents an experimental and numerical study to estimate ballistic limit velocity, V50, of plain-weave hybrid S2 glass-IM7 graphite fibers/toughened SC-79 resin (cured at 177°C) composite beams. The tests were conducted on hybrid S2 glass-IM7 graphite fibers/toughened SC-79 resin and nonhybrid S2 glass-fiber/toughened SC-79 resin composites beams using high-speed gas-gun. The ballistic impact tests were then modeled using 3-D dynamic nonlinear finite element (FE) code, LS-DYNA, modified with a proposed user-defined nonlinear-orthotropic damage model. The ballistic limit velocities, V50, for both composite beams were then estimated using (a) only experimental tests, (b) combined experimental and numerical tests, (c) FE calculated residual velocities, and (d) FE calculated residual and transferred energies. For each type of composite beams, the parameters for the well-known Lambert-Jones equation were also computed. Good agreement between experimental and numerical results was observed.


2002 ◽  
Vol 124 (4) ◽  
pp. 374-378 ◽  
Author(s):  
C. M. Lawrence Wu ◽  
Robert K. Y. Li ◽  
N. H. Yeung

Isotropic conductive adhesives (ICA) have been considered as replacement materials for lead-tin solder alloys. In this paper, the post-impact shear strength of ICA surface mount (SM) joints was obtained experimentally and compared with that of SM lead-tin joints. The dynamic impact energy was provided in the form of three-point bending on the PCB using equipment called the split Hopkinson bar. Strain rates of over 4000/s were used for the impact bending test. The action of impact bending was used to simulate the effect on the PCB and the interconnection as a result of high energy impact on an electronic equipment. Shear test was then performed to examine the change in strength of the ICA joints as a result of impact damage. It was found that the SM ICA joints failed due to impact at a strain rate just over 4000/s. Microstructural examination carried out using a scanning electron microscope revealed that the interface between the ICA and copper pad on the PCB was the weakest region of the joint.


2017 ◽  
Vol 35 (4) ◽  
pp. 907-922 ◽  
Author(s):  
Antti Lakka ◽  
Tuija I. Pulkkinen ◽  
Andrew P. Dimmock ◽  
Adnane Osmane ◽  
Ilja Honkonen ◽  
...  

Abstract. We investigate the effects of different initialisation methods of the GUMICS-4 global magnetohydrodynamic (MHD) simulation to the dynamics in different parts of the Earth's magnetosphere and hence compare five 12 h simulation runs that were initiated by 3 h of synthetic data and followed by 9 h of solar wind measurements using the OMNI data as input. As a reference, we use a simulation run that includes nearly 60 h of OMNI data as input prior to the 9 h interval examined with different initialisations. The selected interval is a high-speed stream event during a 10-day interval (12–22 June 2007). The synthetic initialisations include stepwise, linear and sinusoidal functions of the interplanetary magnetic field with constant density and velocity values. The results show that the solutions converge within 1 h to give a good agreement in both the bow shock and the magnetopause position. However, the different initialisation methods lead to local differences which should be taken into consideration when comparing model results to satellite measurements.


Sign in / Sign up

Export Citation Format

Share Document