Larger Array Fine Pitch Wafer Level Package Drop Test Reliability

Author(s):  
Tiao Zhou ◽  
Robert Derk ◽  
Kaysar Rahim ◽  
Xuejun Fan

In this study, drop test reliabilities of wafer level packages (WLP) are investigated. Failure mechanism, crack map and crack initiation location are presented. Failure rates of six groups defined by JEDEC are examined through both drop test experiment and finite element (FE) analysis with ANSYS software. Effects of component placement, PCB design, WLP structures, array size, pitch, and solder alloy are studied through drop test experiment per JESD22-B111 and finite element modeling. It is found that the primary failure mechanism of WLP drop test failures is fracture of intermetallic compound (IMC) at WLP side. During the drop test, solder joints at outer columns experience most stress and will fracture first. And the corner balls always fail first. The crack initiates at inner side of solder joint and propagates to the opposite side. When JEDEC recommended PCB is used for WLP drop test, the corner components fail first. This is different from the findings from BGA packages. It is confirmed that the dominant failure rate of corner WLP components is mainly due to the effect of mounting screws, rather than the intrinsic drop test reliability of WLP. Therefore, it is not appropriate to judge the drop test reliability of WLP with the drop test data for the corner components. Instead, middle component drop test data represent intrinsic shock resistance of WLP, and they should be used to represent the drop test performance of WLP. Drop test DOE results showed that WLP structure and material make visible difference. Non-soldermask defined (NSMD) PCB pad designs result in better drop reliability than SMD pads. With a given ball array, WLP with smaller pitch has worse drop reliability. As array size increases from 6×6 to 10×10 and 12×12, the drop test performance drops significantly. In addition, choice of solder alloy makes visible difference for WLP.

Author(s):  
Minshu Zhang ◽  
S. W. Ricky Lee

Interfacial delamination is a long existing problem in the moisture preconditioning process and reflow. The failure is caused by the competition between interfacial strength and hygrothermal stress. Many simulations based on the finite element model have been applied to study the failure mechanism of this phenomenon. However, the difficulty in obtaining material properties of mini-size packages, the lack of experiment investigation of interfacial adhesion and the less-understood moisture analysis will always bring many challenges to simulations. To avoid the above issues, dummy QFN packages were fabricated as the test vehicle for the investigation of the moisture related failure. The major advantage of using dummy packages is that all material properties could be traced and all geometric parameters could be determined without ambiguities. With everything under control, failure modes could be generated within expectation. This would provide a good experiment comparison for future finite element analysis. In this study, several experiment procedures were implemented to establish the relationship between material selection and moisture sensitivity level (MSL) test performance. They were package fabrication, mechanical tests for interfacial adhesion, C-SAM and cross-section inspections. Based on the experimental results, features of the moisture related failure mechanism are presented in this paper.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 295
Author(s):  
Pao-Hsiung Wang ◽  
Yu-Wei Huang ◽  
Kuo-Ning Chiang

The development of fan-out packaging technology for fine-pitch and high-pin-count applications is a hot topic in semiconductor research. To reduce the package footprint and improve system performance, many applications have adopted packaging-on-packaging (PoP) architecture. Given its inherent characteristics, glass is a good material for high-speed transmission applications. Therefore, this study proposes a fan-out wafer-level packaging (FO-WLP) with glass substrate-type PoP. The reliability life of the proposed FO-WLP was evaluated under thermal cycling conditions through finite element simulations and empirical calculations. Considering the simulation processing time and consistency with the experimentally obtained mean time to failure (MTTF) of the packaging, both two- and three-dimensional finite element models were developed with appropriate mechanical theories, and were verified to have similar MTTFs. Next, the FO-WLP structure was optimized by simulating various design parameters. The coefficient of thermal expansion of the glass substrate exerted the strongest effect on the reliability life under thermal cycling loading. In addition, the upper and lower pad thicknesses and the buffer layer thickness significantly affected the reliability life of both the FO-WLP and the FO-WLP-type PoP.


2006 ◽  
Vol 22 (3) ◽  
pp. 213-220 ◽  
Author(s):  
K. J. Shou ◽  
F. W. Chang

AbstractIn this study, physical and numerical models were used to analyze pipe-soil interaction during pipejacking work. After calibrating with the physical modeling results, the finite element software ABAQUS [1] was used to study the pipejacking related behavior, such as surface subsidence, failure mechanism, pipe-soil interaction, etc. The results show that the driving force in the tunnelling face is very important and critical for pipejacking. Surface subsidence is mainly due to the lack of driving force, however, excessive driving force could cause the unfavorable surface heaving problem. It also suggests that the depth of the pipe is critical to determine a proper driving force to stabilize the tunnelling face.


2009 ◽  
Vol 419-420 ◽  
pp. 37-40
Author(s):  
Shiuh Chuan Her ◽  
Shien Chin Lan ◽  
Chun Yen Liu ◽  
Bo Ren Yao

Drop test is one of the common methods for determining the reliability of electronic products under actual transportation conditions. The aim of this study is to develop a reliable drop impact simulation technique. The test specimen of a printed circuit board is clamped at two edges on a test fixture and mounted on the drop test machine platform. The drop table is raised at the height of 50mm and dropped with free fall to impinge four half-spheres of Teflon. One accelerometer is mounted on the center of the specimen to measure the impact pulse. The commercial finite element software ANSYS/LS-DYNA is applied to compute the impact acceleration and dynamic strain on the test specimen during the drop impact. The finite element results are compared to the experimental measurement of acceleration with good correlation between simulation and drop testing. With the accurate simulation technique, one is capable of predicting the impact response and characterizing the failure mode prior to real reliability test.


2015 ◽  
Vol 712 ◽  
pp. 63-68
Author(s):  
Przemysław Osocha ◽  
Bohdan Węglowski

In some coal-fired power plants, pipeline elements have worked for over 200 000 hours and increased number of failures is observed. The paper discuses thermal wear processes that take place in those elements and lead to rupture. Mathematical model based on creep test data, and describing creep processes for analyzed material, has been developed. Model has been verified for pipeline operating temperature, lower than tests temperature, basing on Larson-Miller relation. Prepared model has been used for thermal-strength calculations based on a finite element method. Processes taking place inside of element and leading to its failure has been described. Than, basing on prepared mathematical creep model and FE model introduced to Ansys program further researches are made. Analysis of dimensions and shape of pipe junction and its influence on operational element lifetime is presented. In the end multi variable dependence of temperature, steam pressure and element geometry is shown, allowing optimization of process parameters in function of required operational time or maximization of steam parameters. The article presents wide range of methods. The creep test data were recalculated for operational temperature using Larson-Miller parameter. The creep strain were modelled, used equations and their parameters are presented. Analysis of errors were conducted. Geometry of failing pipe junction was introduced to the Ansys program and the finite element analysis of creep process were conducted.


2004 ◽  
Author(s):  
Chelliah Madasamy ◽  
Tau Tyan ◽  
Omar Faruque ◽  
Thierry Guimberteau

Sign in / Sign up

Export Citation Format

Share Document