Microstructural Evolution in SAC305 and SAC-Bi Solders Subjected to Mechanical Cycling

Author(s):  
Md Mahmudur R. Chowdhury ◽  
Mohd Aminul Hoque ◽  
Abdullah Fahim ◽  
Jeffrey C. Suhling ◽  
Sa'd Hamasha ◽  
...  

Fatigue failure of solder joints is one of the most common methods by which electronic packages fail. Electronic assemblies usually must cope with a temperature varying environment. Due to the mismatches in coefficients of thermal expansion (CTEs) of the various assembly materials, the solder joints are subjected to cyclic thermal-mechanical loading during temperature cycling. The main focus of this work is to investigate the changes in microstructure that occur in SAC305 and SAC+Bi lead free solders subjected to mechanical cycling. In this paper, we report on results for the SAC+Bi solder commonly known as SAC_Q or CYCLOMAX. Uniaxial solder specimens were prepared in glass tubes, and the outside surfaces were polished. A nanoindenter was then used to mark fixed regions on the samples for subsequent microscopy evaluation. The samples were subjected to mechanical cycling, and the microstructures of the selected fixed regions were recorded after various durations of cycling using Scanning Electron Microscopy (SEM). Using the recorded images, it was observed that the cycling induced damage consisted primarily of small intergranular cracks forming along the subgrain boundaries within dendrites. These cracks continued to grow as the cycling continued, resulting in a weakening of the dendrite structure, and eventually to the formation of large transgranular cracks. The distribution and size of the intermetallic particles in the inter-dendritic regions were observed to remain essentially unchanged.

Author(s):  
Md Mahmudur R. Chowdhury ◽  
Mohd Aminul Hoque ◽  
Jeffrey C. Suhling ◽  
Sa’d Hamasha ◽  
Pradeep Lall

Abstract Currently, lead-free solders are being widely used as an alternative to traditional Sn-Pb solders in micro-electronic packaging industry due to the environmental concern of lead. Fatigue failure of solder joints is one of the common failure modes in electronic packaging which might be attributed to the experiences of thermo-mechanical fatigue (e.g. Power switching) or mechanical fatigue (e.g. vibration) loading. To design these lead-free solders more strategically for specific applications, it is important to understand the failure mechanism of lead-free solders under fatigue loading. Moreover, the microstructure and constitutive properties of conventional lead free solder joints in electronic assemblies such as SAC305 changes when exposed to isothermal aging. These changes consequently reduce the reliability of lead free electronic assemblies significantly due to aging. In this study, we have examined the effects of prior aging on damage accumulation occurring in SAC305 and SAC_Q (SAC+Bi) solder materials subjected to mechanical cycling (fatigue testing). Uniaxial samples have been prepared and polished so that the microstructural changes could be tracked after the initial aging, and then subsequently with mechanical cycling. In particular, we have examined the microstructural changes that occurred in small fixed regions in the solder samples, rather than using several different regions. Regions of interest near the center of the sample were marked using small indents formed with a nanoindentation system. Samples were then subjected to aging at 125 °C for various durations to produce several different initial microstructures. Scanning electron microscopy (SEM) were used to investigate the aging induced microstructural changes in the regions of interest in the solder sample. After aging, the samples were then subjected to mechanical cycling. After various durations of cycling (e.g. 0, 10, 25, 50, 75, 100, 200, 300 cycles) that were below the fatigue life of the materials, the regions of interest were again examined using SEM. Using the recorded images, the microstructural evolutions in the fixed regions were observed, and the effects of the initial aging on the results were determined. In case of SAC305, It was found that the number of IMC particles decreased while the average diameter of the particles increases significantly due to the initial aging. The distribution and size of the intermetallic particles in the inter-dendritic regions were observed to remain essentially unchanged with the application of the mechanical cyclic load. Relative to the non-aged samples, there were significant differences observed in the rate and intensity of the micro crack growth occurring in the heavily aged samples that began with much coarser microstructures. Later, the cycling induced microstructure evolutions observed in the SAC_Q lead free alloy has been compared with the observed changes in the microstructure of SAC305 that occurred during the cyclic loading. Due to the presence of bismuth, significant difference in the microstructural evolution of the SAC_Q alloy during cycling were observed. Thus, the doped alloys have shown a high potential for use in thermal cycling conditions because of their improved resistance to aging-induced evolution.


2013 ◽  
Vol 686 ◽  
pp. 201-210
Author(s):  
Yee Kai Tian ◽  
Mee Chu Wong

Since the ban of lead containing solders, eutectic SAC solders has been claimed to posses better properties compared to other series of lead free solders. As the technology trend for portable devices change over time, solder joints are continuously miniaturized. The VLSI in modern devices will subject the solder joints to repeated temperature cycling during both assembling and use due to higher I/O. These lead free solders are prone to excessive intermetallic compound (IMC) growth at the interface between the solder and the substrate due to the reasons cited earlier. The most common substrate used in electronic packaging is Cu while Au or its alloys are often used as metallization layer. In this study PCBs coated with both Cu and Au to study the interfacial morphology of Sn-3.8Ag-0.7Cu (SAC387) alloy with these metals. SEM imaging and EDX analysis were used to observe the interfacial layers and to confirm formation of IMCs. IMCs formed between Au-solder are more blocky-like compared to those formed between Cu-solder. Thus further studies must be conducted to resolve this issue as Au is a commonly used metallization materials.


Author(s):  
X. Long ◽  
I. Dutta ◽  
R. Guduru ◽  
R. Prasanna ◽  
M. Pacheco

A thermo-mechanical loading system, which can superimpose a temperature and location dependent strain on solder joints, is proposed in order to conduct highly accelerated thermal-mechanical cycling (HATC) tests to assess thermal fatigue reliability of Ball Grid Array (BGA) solder joints in microelectronics packages. The application of this temperature and position dependent strain produces generally similar loading modes (shear and tension) encountered by BGA solder joints during service, but substantially enhances the inelastic strain accumulated during thermal cycling over the same temperature range as conventional ATC (accelerated thermal cycling) tests, thereby leading to a substantial acceleration of low-cycle fatigue damage. Finite element analysis was conducted to aid the design of experimental apparatus and to predict the fatigue life of solder joints in HATC testing. Detailed analysis of the loading locations required to produce failure at the appropriate joint (next to the die-edge ball) under the appropriate tension/shear stress partition are presented. The simulations showed that the proposed HATC test constitutes a valid methodology for further accelerating conventional ATC tests. An experimental apparatus, capable of applying the requisite loads to a BGA package was constructed, and experiments were conducted under both HATC and ATC conditions. It is shown that HATC proffers much reduced cycling times compared to ATC.


1992 ◽  
Vol 264 ◽  
Author(s):  
John McGroarty ◽  
Boris Yost ◽  
Peter Børgesen ◽  
Che-Yu Li

AbstractPassive alignment techniques using area array solder joints are currently under investigation as a cost effective method of achieving electro-optical interconnects in electronic packages. Several investigators have developed models that describe the shapes of and forces produced by the liquid solder drops during reflow. These models are reviewed to provide a scientific basis for the application of such techniques.


2021 ◽  
Author(s):  
Mohammad Ashraful Haq ◽  
Mohd Aminul Hoque ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract A major problem faced by electronic packaging industries is the poor reliability of lead free solder joints. One of the most common methods utilized to tackle this problem is by doping the alloy with other elements, especially bismuth. Researches have shown Bismuth doped solder joints to mostly fail near the Intermetallic (IMC) layer rather than the bulk of the solder joint as commonly observed in traditional SAC305 solder joints. An understanding of the properties of this IMC layer would thus provide better solutions on improving the reliability of bismuth doped solder joints. In this study, the authors have used three different lead free solders doped with 1%, 2% and 3% bismuth. Joints of these alloys were created on copper substrates. The joints were then polished to clearly expose the IMC layers. These joints were then aged at 125 °C for 0, 1, 2, 5 and 10 days. For each aging condition, the elastic modulus and the hardness of the IMC layers were evaluated using a nanoindenter. The IMC layer thickness and the chemical composition of the IMC layers were also determined for each alloy at every aging condition using Scanning Electron Microscopy (SEM) and EDS. The results from this study will give a better idea on how the percentage of bismuth content in lead free solder affects the IMC layer properties and the overall reliability of the solder joints.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000314-000318
Author(s):  
Tong Jiang ◽  
Fubin Song ◽  
Chaoran Yang ◽  
S. W. Ricky Lee

The enforcement of environmental legislation is pushing electronic products to take lead-free solder alloys as the substitute of traditional lead-tin solder alloys. Applications of such alloys require a better understanding of their mechanical behaviors. The mechanical properties of the lead-free solders and IMC layers are affected by the thermal aging. The lead-free solder joints on the pads subject to thermal aging test lead to IMC growth and cause corresponding reliability concerns. In this paper, the mechanical properties of the lead-free solders and IMCs were characterized by nanoindentation. Both the Sn-rich phase and Ag3Sn + β-Sn phase in the lead-free solder joint exhibit strain rate depended and aging soften effect. When lead-free solder joints were subject to thermal aging, Young's modulus of the (Cu, Ni)6Sn5 IMC and Cu6Sn5 IMC changed in very small range. While the hardness value decreased with the increasing of the thermal aging time.


2005 ◽  
Vol 127 (4) ◽  
pp. 466-473 ◽  
Author(s):  
B. L. Chen ◽  
X. Q. Shi ◽  
G. Y. Li ◽  
K. H. Ang ◽  
Jason P. Pickering

In this study, a thermoelectric cooler-based rapid temperature cycling (RTC) testing method was established and applied to assess the long term reliability of solder joints in tape ball grid array (TBGA) assembly. This RTC testing methodology can significantly reduce the time required to determine the reliability of electronic packaging components. A three-parameter Weibull analysis characterized with a parameter of failure free time was used for assembly reliability assessment. It was found that the RTC not only speedily assesses the long-term reliability of solder joints within days, but also has the similar failure location and failure mode observed in accelerated temperature cycling (ATC) test. Based on the RTC and ATC reliability experiments and the modified Coffin-Manson equation, the solder joint fatigue predictive life can be obtained. The simulation results were found to be in good agreement with the test results from the RTC. As a result, a new reliability assessment methodology was established as an alternative to ATC for the evaluation of long-term reliability of electronic packages.


Sign in / Sign up

Export Citation Format

Share Document