An Optimization Model for the Energy Consumption vs. Gas Cooling Requirements in a Large NPS 56 Gas Transmission System

Author(s):  
Neda Razi

Optimization of a large gas transmission pipeline results in reduced fuel consumption or higher capability and improves pipeline operation. In the current study, we have done an extensive research to optimize the operation of a huge NPS 56 pipeline system using gas cooling. This gas transmission line (the 4th major gas transmission pipeline of the National Iranian Gas Company, NIGC, or IGAT4) is designed to move over 110 MMSCMD (4.0 BCFD) of natural gas from the Assaluyeh Gas Refinery. This gas refinery which in turn receives gas from the huge gas reservoir of the South Pars Field (Iranian off-shore) is located in the south of Iran. The length of this system is over 800 kms (500 miles) with over 700 MW of compression power and aerial coolers at all compressor stations. This system passes through a very tortuous terrain with significant changes in elevation and ambient temperature which makes the optimization process even more challenging. The main objective of this project was to develop a customized tool to optimize the operation (energy consumption) of this gas transmission pipeline with all the existing system variables. The emphasis was on the impact of gas cooling (effective operation of aerial coolers) on the optimization process which in turn leads to the fuel minimization or higher capability. In this process, the impact of ambient temperature, soil temperature throughout the entire route of the pipeline, cost of electricity & fuel gas, heat transfer and Joule-Thompson effect were carefully considered. The tool was finally developed and was successfully tested on this gas transmission system which resulted in extremely accurate results. This tool could be further generalized to be used for other transmission systems.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ammar Ali Abd ◽  
Samah Zaki Naji ◽  
Ching Thian Tye ◽  
Mohd Roslee Othman

Abstract Liquefied petroleum gas (LPG) plays a major role in worldwide energy consumption as a clean source of energy with low greenhouse gases emission. LPG transportation is exhibited through networks of pipelines, maritime, and tracks. LPG transmission using pipeline is environmentally friendly owing to the low greenhouse gases emission and low energy requirements. This work is a comprehensive evaluation of transportation petroleum gas in liquid state and compressible liquid state concerning LPG density, temperature and pressure, flow velocity, and pump energy consumption under the impact of different ambient temperatures. Inevitably, the pipeline surface exchanges heat between LPG and surrounding soil owing to the temperature difference and change in elevation. To prevent phase change, it is important to pay attention for several parameters such as ambient temperature, thermal conductivity of pipeline materials, soil type, and change in elevation for safe, reliable, and economic transportation. Transporting LPG at high pressure requests smaller pipeline size and consumes less energy for pumps due to its higher density. Also, LPG transportation under moderate or low pressure is more likely exposed to phase change, thus more thermal insulation and pressure boosting stations required to maintain the phase envelope. The models developed in this work aim to advance the existing knowledge and serve as a guide for efficient design by underling the importance of the mentioned parameters.


2018 ◽  
Vol 19 (6) ◽  
pp. 53-56
Author(s):  
Piotr Bojar ◽  
Mariusz Mikulski

The drivers' workplace has an impact on the safety of transport. Among the factors causing changes in driver behavior are the anthropechnical factors resulting from the actions of people in the vehicle and its surroundings, external ones resulting from the impact of weather conditions as well as the condition of the infrastructure and work resulting from the operation of the means of transport.One of such working factors is the noise which may be the source of: a drive unit, drive transmission system, suspension system, etc. The paper attempts to identify and assess the impact of this factor on the energy consumption of the driver's work.


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2355-2365
Author(s):  
Veliborka Bogdanovic ◽  
Dusan Randjelovic ◽  
Miomir Vasov ◽  
Marko Ignjatovic ◽  
Jelena Stevanovic

This paper analyzes the impact of Trombe wall construction on heating and cooling demands of building with form (rectangular single-store building of about one hundred square meters area) which is common for individual residential buildings in the Republic of Serbia. Trombe wall, as a representative of a passive solar design, was installed on the south wall of the building. Model of the building was made in the Google SketchUp software, while the results of energy performance were obtained using EnergyPlus and jEplus. Parameters of thermal comfort and climatic data for the area of city of Belgrade, Republic of Serbia, were taken into account. Coverage of the south fa?ade was varied, as well as the thickness of the thermal mass and orientation. Energy consumption of the object is discussed, based on obtained results of the analysis. According to comparative analysis of the above mentioned models it can be concluded that the application of the Trombe wall structure on south side may lead to savings of 33% on heating, but also the higher energy consumption for cooling. Total energy consumption on an annual basis is reduced by using this system.


2019 ◽  
Vol 10 (1) ◽  
pp. 2 ◽  
Author(s):  
Paolo Iora ◽  
Laura Tribioli

In this paper, a general quasi-steady backward-looking model for energy consumption estimation of electric vehicles is presented. The model is based on a literature review of existing approaches and was set up using publicly available data for Nissan Leaf. The model has been used to assess the effect of ambient temperature on energy consumption and range, considering various reference driving cycles. The results are supported and validated using data available from an experimental campaign where the Nissan Leaf was driven to depletion across a broad range of winter ambient temperatures. The effect of ambient temperature and the consequent accessories consumption due to cabin heating are shown to be remarkable. For instance, in case of Federal Urban Driving Schedule (FUDS), simplified FUDS (SFUDS), and New European Driving Cycle (NEDC) driving cycles, the range exceeds 150 km at 20 °C, while it reduces to about 85 km and 60 km at 0 °C and −15 °C, respectively. Finally, a sensitivity analysis is reported to assess the impact of the hypotheses in the battery model and of making different assumptions on the regenerative braking efficiency.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6090
Author(s):  
Steven Jackson ◽  
Eivind Brodal

Hydrogen used as an energy carrier can provide an important route to the decarbonization of energy supplies, but realizing this opportunity will require both significantly increased production and transportation capacity. One route to increased transportation capacity is the shipping of liquid hydrogen, but this requires an energy-intensive liquefaction step. Recent study work has shown that the energy required in this process can be reduced through the implementation of new and improved process designs, but since all low-temperature processes are affected by the available heat-sink temperature, local ambient conditions will also have an impact. The objective of this work is to identify how the energy consumption associated with hydrogen liquefaction varies with heat-sink temperature through the optimization of design parameters for a next-generation mixed refrigerant based hydrogen liquefaction process. The results show that energy consumption increases by around 20% across the cooling temperature range 5 to 50 °C. Considering just the range 20 to 30 °C, there is a 5% increase, illustrating the significant impact ambient temperature can have on energy consumption. The implications of this work are that the modelling of different liquified hydrogen based energy supply chains should take the impact of ambient temperature into account.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Nick Towner ◽  
Semisi Taumoepeau

Abstract Tuvalu and Nauru are isolated developing island nations located in the South Pacific Ocean. In contrast to the established larger Pacific destinations such as Fiji and Tahiti, the tourism industries on both Tuvalu and Nauru are in their infancy. Tourism development in these remote island nations faces a myriad of challenges which include a lack of infrastructure, environmental susceptibility, economic vulnerability, difficulties with access and considerable distances from major tourist markets. This paper reviews tourism on Tuvalu and Nauru and evaluates their current situation regarding potential tourism development through workshops with relevant stakeholders, surveys and subsequent SWOT analysis. The results of the paper outlined a large number of challenges faced by Tuvalu and Nauru due to their geographic location but also highlighted that both Islands possess fascinating and unique features that have the potential to attract niche tourism markets. A key finding of this paper is that the tourism stimulus or potential attraction can also be the chief threat to the islands’ economic survival hence the two edges of the sword. Further research is required to assess the effect of the withdrawal of the Refugee Processing Centre on Nauru’s economy and to evaluate the impact of climate change on Tuvalu’s society and potential adaption strategies.


2016 ◽  
Vol 3 (1) ◽  
pp. 55-60
Author(s):  
Yu. Lavrynenko ◽  
R. Vozhegova ◽  
O. Hozh

The purpose of the research is to identify effi cient microfertilizers and growth stimulants considering biologi- cal features of new corn hybrids of different FAO groups under irrigation conditions in the South of Ukraine and trace their impact on grain productivity of the plants. The methods of the research are the fi eld method – to study the interaction of the research object with experimental factors of the natural environment, to register the yield and evaluate the biometrical indices; the laboratory method – to measure soil moisture, grain moisture content and grain quality indices; the statistical method – to evaluate the reliability of the obtained results; the calculation methods – for economic and energetic assessment of the growing techniques used. The results of the research. The paper defi nes the impact of microfertilizers and growth stimulants on the yield and grain quality of the corn hybrids of different maturity groups and on the economic effi ciency of growing them. The conclusions of the research. Under irrigation conditions of the Southern Steppe of Ukraine it is recommended that the following hybrids should be grown in dark-chestnut soils: early maturity DN Pyvykha, medium-early Skadovskyi, medium maturity Kakhovskyi and medium-late Arabat, using the growth stimulants – treating the seeds with Sezam-Nano and fertilizing with Grainactive at the stage of 7–8 leaves.


Sign in / Sign up

Export Citation Format

Share Document