A New Automatic Readout Circuit for a Gas Sensor With Organic Vertical Nano-Junctions

Author(s):  
Hung-Che Chen ◽  
Yung-Hua Kao ◽  
Paul C.-P. Chao ◽  
Chin-Long Wey

The design of the proposed readout circuit provides benefits of detection speed, portability, low-cost and less human operational errors compared with the measurement by traditional instruments. Thus the added value is brought for biosensors and applied in home care. A novel readout circuit for a gas sensor based on an organic diode with vertical nano-junctions (VNJ) is proposed in this study. There are seven parts included in the readout system. First part is a preamplifier, second part is a peak-detect-and-hold circuit, third part is a divider, fourth part is the saturation detector, fifth part is the auto-reset circuit, sixth part is a logic gate and a buffer, seventh part is a micro-processor control unit (MCU). STM32 is the CPU of proposed MCU by ALIENTEK. The ADC of MCU is used to transform the output data of readout circuit. The designed circuit is accomplished by Taiwan Semiconductor Manufacturing Company (TSMC) 0.35 μm 2P4M 3.3 V mixed signal CMOS process, the area of chip is 0.74×0.75 mm2. Finally, the differences between experimental results with post-simulation results in 10 ppb ∼ 3 ppm of ammonia, the differences are within 7.24%. The sensing system is able to detect minimum ammonia concentration of 10 ppb, while the maximum one reaches around 3 ppm.

Author(s):  
Paul C.-P. Chao ◽  
Chin-I Su ◽  
Trong-Hieu Tran ◽  
Hsiao-Wen Zan

A new sensitivity organic vertical nano-junctions (VNJ) sensor for ammonia detection and its readout system are presented in this study. The designed ammonia sensor, VNJP3HT diode, is a simple structure with real-time response, high reproducibility and low-cost sensor. Along with the designed sensor, a precision and robust readout circuit is designed and successfully implemented as the proposed chip in this study. To utilize for a novel organic bio-chip, a particular readout system is presented that can acquire signal, compute and display concentration values of ammonia without using microcontroller. The chip is fabricated by the TSMC 0.18-μm 1P6M 3.3V mixed-signal CMOS process technique for verification. Experiment results show that the average resolution is 70.48mV/log (ppm) in a short transient time response, 50 seconds, as compared to prior study, 200 seconds. Error rate, average noise and detection rate reliability are 2.86%, 123 μVrms, and 99.6%, respectively. This chip could be suitable for application in cars, cell phones, watches, etc.


2014 ◽  
Vol 23 (06) ◽  
pp. 1450079 ◽  
Author(s):  
PAWAN WHIG ◽  
SYED NASEEM AHMAD

In this paper, the design of an ASIC is presented that implement a low-cost system for the supervision of water quality in urban areas or rivers. Photo catalytic sensor (PCS) estimates the parameter biological oxygen demand (BOD) which is generally used to estimate quality of water. The system proposed in this paper involves a simple potentiometric approach that provides a correlation in the input–output signals of low-cost sensors. This approach which is more users friendly and fast in operation is obtained by modeling and optimization of sensor for water quality monitoring. This is to overcome several drawbacks generally found in the previous flow injection analysis method of determining chemical oxygen demand (COD)-like complex designing, nonlinearity and long computation time. The system constitutes a significant cost reduction in the supervision of water quality monitoring. The main reason of employing a readout circuit to PCS circuitry, is the fact that the fluctuation of O 2 influences the threshold voltage, which is internal parameter of the FET and can manifest itself as a voltage signal at output but as a function of the trans-conductance gain. The trans-conductance is a passive parameter and in order to derive voltage or current signal from its fluctuations the sensor has to be attached to readout circuit. This circuit provides high sensitivity to the changes in percentage of O 2 in the solution. In this design simple potentiometric approach with few passive components are used to build a readout circuit. The paper focuses on the electronic implementation of the readout system for the PCS which optimize the circuit performance and increases reliability.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 772 ◽  
Author(s):  
Ya-Chu Lee ◽  
Ping-Lin Yang ◽  
Chun-I Chang ◽  
Weileun Fang

This study implements the metal-oxide-semiconductor (MOS) type gas sensor using the TSMC 0.35 μm 2P4M process. The gas concentration is detected based on the resistance change measured by the proposed sensor. This design has three merits: (1) low-cost post-CMOS process using metal/oxide wet etching, (2) composite sensing material based on ZnO-SnO2 coating on the CMOS-MEMS structure, (3) vertical integration of heater and ZnO-SnO2 gas-sensing films using CMOS-MEMS and drop casting technologies. Proposed design significantly increase the sensitivity at the high operating temperature. In summary, the sensitivity of presented sensor increased from 0.04%/% (O2/N2) at near room operating temperature to 0.2%/%(O2/N2) at near 140 °C for the range of 5–50% oxygen concentration.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 958
Author(s):  
Maosheng Zhang ◽  
Yu Bai ◽  
Shu Yang ◽  
Kuang Sheng

With the increasing integration density of power control unit (PCU) modules, more functional power converter units are integrated into a single module for applications in electric vehicles or hybrid electric vehicles (EVs/HEVs). Different types of power dies with different footprints are usually placed closely together. Due to the constraints from the placement of power dies and liquid cooling schemes, heat-flow paths from the junction to coolant are possibly inconsistent for power dies, resulting in different thermal resistance and capacitance (RC) characteristics of power dies. This presents a critical challenge for optimal liquid cooling at a low cost. In this paper, a highly integrated PCU module is developed for application in EVs/HEVs. The underlying mechanism of the inconsistent RC characteristics of power dies for the developed PCU module is revealed by experiments and simulations. It is found that the matching placement design of power dies with a heat sink structure and liquid cooler, as well as a liquid cooling scheme, can alleviate the inconsistent RC characteristics of power dies in highly integrated PCU modules. The findings in this paper provide valuable guidance for the design of highly integrated PCU modules.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 122
Author(s):  
Karina J. Lagos ◽  
Bojan A. Marinkovic ◽  
Alexis Debut ◽  
Karla Vizuete ◽  
Víctor H. Guerrero ◽  
...  

Ecuadorian black mineral sands were used as starting material for the production of iron-titanium oxide nanostructures. For this purpose, two types of mineral processing were carried out, one incorporating a pre-treatment before conducting an alkaline hydrothermal synthesis (NaOH 10 M at 180 °C for 72 h), and the other prescinding this first step. Nanosheet-assembled flowers and nanoparticle agglomerates were obtained from the procedure including the pre-treatment. Conversely, nanobelts and plate-like particles were prepared by the single hydrothermal route. The nanoscale features of the product morphologies were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses. The ilmenite and hematite molar fractions, within the ilmenite-hematite solid solution, in the as-synthetized samples were estimated by Brown’s approach using the computed values of unit-cell volumes from Le Bail adjustments of X-ray powder diffraction (XRPD) patterns. The resulting materials were mainly composed of Fe-rich ilmenite-hematite solid solutions (hematite molar contents ≥0.6). Secondary phases, which possibly belong to lepidocrocite-like or corrugated titanate structures, were also identified. The current study demonstrated the feasibility of employing Ecuadorian mineral resources as low-cost precursors to synthesize high-added-value nanostructures with promising applications in several fields.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 942
Author(s):  
Razvan Pascu ◽  
Gheorghe Pristavu ◽  
Gheorghe Brezeanu ◽  
Florin Draghici ◽  
Philippe Godignon ◽  
...  

A SiC Schottky dual-diode temperature-sensing element, suitable for both complementary variation of VF with absolute temperature (CTAT) and differential proportional to absolute temperature (PTAT) sensors, is demonstrated over 60–700 K, currently the widest range reported. The structure’s layout places the two identical diodes in close, symmetrical proximity. A stable and high-barrier Schottky contact based on Ni, annealed at 750 °C, is used. XRD analysis evinced the even distribution of Ni2Si over the entire Schottky contact area. Forward measurements in the 60–700 K range indicate nearly identical characteristics for the dual-diodes, with only minor inhomogeneity. Our parallel diode (p-diode) model is used to parameterize experimental curves and evaluate sensing performances over this far-reaching domain. High sensitivity, upwards of 2.32 mV/K, is obtained, with satisfactory linearity (R2 reaching 99.80%) for the CTAT sensor, even down to 60 K. The PTAT differential version boasts increased linearity, up to 99.95%. The lower sensitivity is, in this case, compensated by using a high-performing, low-cost readout circuit, leading to a peak 14.91 mV/K, without influencing linearity.


2012 ◽  
Vol 241-244 ◽  
pp. 2714-2717
Author(s):  
Kun Zhang ◽  
Xi Wei Peng

In order to provide more convenient options for users and developers, the design of Human Machine Interface (HMI) based on ARM and embedded Linux is put forward. It makes full use of multiple peripherals of ARM and flexibility of Linux OS. Firstly, hardware design of the HMI system is presented. Then methods of embedded Linux transplanting and the device drivers programming are discussed. Finally, running results and applications of the designed HMI are considered. The design combines the features of traditional HMI and Micro Control Unit (MCU) HMI, including low cost, rich interfaces and easy programming.


2021 ◽  
Author(s):  
Samantha Richardson ◽  
Samira Al Hinai ◽  
Jesse Gitaka ◽  
Will Mayes ◽  
Mark Lorch ◽  
...  

<p>Routine monitoring of available soil nutrients is required to better manage agricultural land<sup>1</sup>, especially in many lower and middle income countries (LMICs). Analysis often still relies on laboratory-based equipment, meaning regular monitoring is challenging.<sup>2</sup> The limited number of in situ sensors that exist are expensive or have complex workflows, thus are not suitable in LMICs, where the need is greatest.<sup>3</sup> We aim to develop a simple-to-use, low-cost analysis system that enable farmers to directly monitor available nutrients and pH on-site, thus making informed decisions about when and where to apply fertilisers.</p><p>We combine nutrient extraction via a cafetiere-based filtration system with nutrient readout on a paper microfluidic analysis device (PAD) employing colour producing reactions that can be captured via a smartphone camera through an app. Image analysis of colour intensity permits quantitation of analytes. We initially focus on key nutrients (phosphate, nitrate) and pH analysis.</p><p>For extraction of phosphate, we mixed soil and water in the cafetiere and quantified the extracted phosphate via phosphomolybdenum blue chemistry. For example, for 5 g of soil, a water volume of about 160 mL led to optimum extraction. Active mixing, by pushing coffee filter plunger up and down, aided extraction. A mixing period of 3 min yielded maximum extraction; this time period was deemed suitable for an on-site workflow.</p><p>Following nutrient extraction, a simple-to-use readout system is required. For this, we developed colourimetric paper-based microfluidic devices; these are simply dipped into the decanted soil supernatant from the cafetiere and wick fluids based on capillary forces. Chemical reagents are pre-stored in reaction zones, created by patterning cellulose with wax barriers. Our devices contain multiple paper layers with different reagents; these are folded, laminated and holes cut for sample entry. Following the required incubation time, the developed colour is captured using a smartphone. This constitutes a portable detector, already available to envisaged end users, even in LMICs. We have previously developed an on-paper reaction for monitoring phosphates in fresh water in the mg L<sup>-1</sup> working range, with readout after an incubation period of 3 min. This method was adapted here to enable storage at ambient temperatures up to 1 week by incorporating additional acidic reagents. Further pad devices were developed in our group for colour-based readout of nitrate, involving a two-step reaction chemistry. Within a relatively short incubation period (≤8 min) a pink coloured was formed following reduction of nitrate to nitrite with zinc and subsequent reaction to form an azo-dye. This system achieved detection in the low mg L<sup>-1</sup> range. Moreover, a pad to monitor pH was developed, employing chlorophenol red indicator, with linear response achieved over the relevant pH 5-7 range.  </p><p>Our analysis workflow combines a simple-to-use cafetiere-based extraction method with paper microfluidic colour readout and smart-phone detector. This has the potential to enable farmers to monitor nutrients in soils on-site. Future work will aim at integrating multiple analytes into a single analysis card and to automate image analysis.</p><p>[1] <em>Europ. J. Agronomy</em>, 55, 42–52, <strong>2014.</strong></p><p>[2] <em>Nutr. Cycling Agroecosyst.,</em> 109, 77-102, <strong>2017.</strong></p><p>[3] Sens Actuators B, 30, 126855, <strong>2019.</strong></p>


Sign in / Sign up

Export Citation Format

Share Document