Capturing Nongradient Transport in Nonequilibrium Gas Flow

Author(s):  
X. J. Gu ◽  
D. R. Emerson

A higher order moment method is employed to construct the transport model for nonequilibrium gas flow in microscale geometries. The one dimensional planar Couette flow was chosen to demonstrate the significance of capturing the nongradient transport phenomena in the prediction of velocity and temperature fields. For planar Couette flow in the transition regime, the velocity profile is nonlinear and the induced temperature field is no longer parabolic. These features are attributed to the nongradient transport mechanism in a nonequilibrium gas. Furthermore, it is revealed that, for a given temperature field, the gradient transport model overestimates the heat transfer significantly. This, again, can be compensated by the nongradient transport mechanism.

Author(s):  
X. J. Gu ◽  
B. John ◽  
G. H. Tang ◽  
D. R. Emerson

A high-order moment method is employed to construct the transport model for non-equilibrium gas flow in micro-scale geometries. The motion of a gas in a two-dimensional square micro-cavity is solved using the 26 moment equations for low Reynolds and Mach number flows in the early transition regime. The computed velocity and temperature fields are compared with data obtained from the direct simulation Monte Carlo method. It is found that the 26 moment equations are able to capture the non-equilibrium phenomena in a driven micro-cavity, such as counter-gradient heat transfer, which are not embedded in the Navier-Stokes-Fourier equations.


Author(s):  
Yi Han ◽  
Feng Liu ◽  
Xin Ran

In the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.


Author(s):  
Ali Sulaiman ◽  
◽  
Bilal Mingazov ◽  
Yury Aleksandrov ◽  
The Nguyen ◽  
...  

Ensuring acceptable temperature field non-uniformity at the outlet of the combustion chamber is a very important requirement that determines the reliability and durability of the turbine. The formation of non-uniformity is determined by the nature of the interaction of the secondary air jets with the gas flow in the flame tube and depends on many factors, both structural and operational parameters. In this paper, we propose to evaluate the non-uniformity of the temperature fields at the outlet of the combustion chamber using a mixing coefficient that determines the quality of mixing jets of secondary air with a gas stream in the mixer. Based on the equation of turbulent diffusion during the flow of an annular jet into a limited space, an analytical dependence is obtained in the work that allows one to calculate the mixing process in the combustion chamber. The connection of the mixing process with the formation of temperature fields is established. Based on this, dependences are obtained for calculating the nonuniformity of temperature fields. Their satisfactory agreement with experimental data was shown. The found dependences allow one to analyze the influence of various parameters on the non-uniformity of temperature fields and accelerate the refinement of the combustion chamber by this parameter. The possibility of predicting the effect of various parameters on the unevenness of temperature fields is shown. The presence of the optimal value of the degree of opening of the mixer is confirmed, at which the minimum value of the unevenness of the temperature field at the outlet of the combustion chamber is achieved. Therefore, the analytical relationships found in the work allow optimizing the design of the mixer in the combustion chamber and the distribution of secondary air in it in order to reduce the unevenness of the temperature fields at the outlet of the combustion chamber.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2030
Author(s):  
Marianna Jacyna ◽  
Renata Żochowska ◽  
Aleksander Sobota ◽  
Mariusz Wasiak

In recent years, policymakers of urban agglomerations in various regions of the world have been striving to reduce environmental pollution from harmful exhaust and noise emissions. Restrictions on conventional vehicles entering the inner city are being introduced and the introduction of low-emission measures, including electric ones, is being promoted. This paper presents a method for scenario analysis applied to study the reduction of exhaust emissions by introducing electric vehicles in a selected city. The original scenario analyses relating to real problems faced by contemporary metropolitan areas are based on the VISUM tool (PTV Headquarters for Europe: PTV Planung Transport Verkehr AG, 76131 Karlsruhe, Germany). For the case study, the transport model of the city of Bielsko-Biala (Poland) was used to conduct experiments with different forms of participation of electric vehicles on the one hand and traffic restrictions for high emission vehicles on the other hand. Scenario analyses were conducted for various constraint options including inbound, outbound, and through traffic. Travel time for specific transport relations and the volume of harmful emissions were used as criteria for evaluating scenarios of limited accessibility to city zones for selected types of vehicles. The comparative analyses carried out showed that the introduction of electric vehicles in the inner city resulted in a significant reduction in the emission of harmful exhaust compounds and, consequently, in an increase in the area of clean air in the city. The case study and its results provide some valuable insights and may guide decision-makers in their actions to introduce both driving ban restrictions for high-emission vehicles and incentives for the use of electric vehicles for city residents.


2004 ◽  
Vol 831 ◽  
Author(s):  
E. Berkman ◽  
R. Collazo ◽  
R. Schlesser ◽  
Z. Sitar

ABSTRACTGallium nitride (GaN) films were grown on (0001) sapphire substrates at 1050°C by controlled evaporation of gallium (Ga) metal and reaction with ammonia (NH3) at a total reactor pressure of 800 Torr. Pure nitrogen (N2) was flowed directly above the molten Ga source to prevented direct reaction between the molten Ga and ammonia, which causes Ga spattering and GaN crust formation. At the same time, this substantially enhanced the Ga transport to the substrate. A simple mass-transport model based on total reactor pressure, gas flow rates and source temperature was developed and verified. The theoretical calculations and growth rate measurements at different ammonia flow rates and reactor pressures showed that the maximum growth rate was controlled by transport of both Ga species and reactive ammonia to the substrate surface.


Author(s):  
Y.-H. Ho ◽  
M. M. Athavale ◽  
J. M. Forry ◽  
R. C. Hendricks ◽  
B. M. Steinetz

A numerical study of the flow and heat transfer in secondary flow elements of the entire inner portion of the turbine section of the Allison T-56/501D engine is presented. The flow simulation included the interstage cavities, rim seals and associated main path flows, while the energy equation also included the solid parts of the turbine disc, rotor supports, and stator supports. Solutions of the energy equations in these problems usually face the difficulty in specifications of wall thermal boundary conditions. By solving the entire turbine section this difficulty is thus removed, and realistic thermal conditions are realized on all internal walls. The simulation was performed using SCISEAL, an advanced 2D/3D CFD code for predictions of fluid flows and forces in turbomachinery seals and secondary flow elements. The mass flow rates and gas temperatures at various seal locations were compared with the design data from Allison. Computed gas flow rates and temperatures in the rim and labyrinth seal show a fair 10 good comparison with the design calculations. The conjugate heat transfer analysis indicates temperature gradients in the stationary intercavity walls, as well as the rotating turbine discs. The thermal strains in the stationary wall may lead to altered interstage labyrinth seal clearances and affect the disc cavity flows. The temperature, fields in the turbine discs also may lead to distortions that can alter the rim seal clearances. Such details of the flow and temperature fields are important in designs of the turbine sections to account for possible thermal distortions and their effects on the performance. The simulation shows that the present day CFD codes can provide the means to understand the complex flow field and thereby aid the design process.


2007 ◽  
Vol 353-358 ◽  
pp. 2003-2006 ◽  
Author(s):  
Wei Tan ◽  
Chang Qing Sun ◽  
Chun Fang Xue ◽  
Yao Dai

Method of Lines (MOLs) is introduced to solve 2-Dimension steady temperature field of functionally graded materials (FGMs). The main idea of the method is to semi–discretized the governing equation of thermal transfer problem into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method. The temperature field of FGM can be obtained by solving the ODEs with functions of thermal properties. As numerical examples, six kinds of material thermal conductivity functions, i.e. three kinds of polynomial functions, an exponent function, a logarithmic function, and a sine function are selected to simulate spatial thermal conductivity profile in FGMs respectively. The steady-state temperature fields of 2-D thermal transfer problem are analyzed by the MOLs. Numerical results show that different material thermal conductivity function has obvious different effect on the temperature field.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuhui Wu ◽  
Xinzhi Zhou ◽  
Li Zhao ◽  
Chenlong Dong ◽  
Hailin Wang

Acoustic tomography (AT), as a noninvasive temperature measurement method, can achieve temperature field measurement in harsh environments. In order to achieve the measurement of the temperature distribution in the furnace and improve the accuracy of AT reconstruction, a temperature field reconstruction algorithm based on the radial basis function (RBF) interpolation method optimized by the evaluation function (EF-RBFI for short) is proposed. Based on a small amount of temperature data obtained by the least square method (LSM), the RBF is used for interpolation. And, the functional relationship between the parameter of RBF and the root-mean-square (RMS) error of the reconstruction results is established in this paper, which serves as the objective function for the effect evaluation, so as to determine the optimal parameter of RBF. The detailed temperature description of the entire measured temperature field is finally established. Through the reconstruction of three different types of temperature fields provided by Dongfang Boiler Works, the results and error analysis show that the EF-RBFI algorithm can describe the temperature distribution information of the measured combustion area globally and is able to reconstruct the temperature field with high precision.


2016 ◽  
Vol 10 (1) ◽  
pp. 205-219
Author(s):  
Qiu Hongbo ◽  
Dong Yu ◽  
Yang Cunxiang

Power rectifiers are very necessary in the wind power generation systems since they are the necessary channels that link the generator and power gird together. However, they have some effects on the permanent magnet wind generator due to their work on fast on-off transitions. Taking an 8kW 2000r/min wind-driven permanent magnet generator as an example, the system model and external circuit were established. Firstly, based on the field-circuit coupling calculation method, the voltage and current harmonics have been studied respectively when the generator was connected to rectifier loads and pure resistance loads, so did the total harmonic distortion. The mechanism of harmonic impacted by rectifiers was revealed. Secondly, combined the harmonic electromagnetic field theory, the stator core loss, armature winding copper loss and rotor eddy loss were analyzed when the generator connected different loads. Furthermore, according to the definition of nonlinear circuits PF, the numerical analysis method was adopted to calculate the power factor when the generator connected two loads respectively. The change mechanism of PF impacted by rectifiers has been revealed. In addition, the temperature field model has been established and the generator temperature was also analyzed. The temperature distributions were obtained when the wind generator was connected to different loads. Then, the relationship between losses and temperature was combined, the change rules of permanent magnet temperature by the eddy current loss were studied under different load. At last, it can prove that the rectifiers have influences on both electromagnetic field and temperature field through comparing the simulation results with experimental test data.


Sign in / Sign up

Export Citation Format

Share Document