Influence of the Porous Volume in the Structure of Resin Bond Composite Abrasives by its Mechanical Performance

Author(s):  
Matheus de Mendonça Chitan ◽  
Katia Cristiane Gandolpho Candioto

Abstract Abrasive tools consist of abrasive grains, binder and pores. Binders are the matrix of the material and may be of the metallic, vitrified or resin type. The wide use of polymeric materials (resinoid) is due to their low cost and excellent mechanical properties. The grain has the function of roughing the material, the binder, on the other hand, has the characteristics of ensuring grain adhesion and the pores in the structure are responsible for cooling the abrasive tool. In this work, we report the preparation and evaluation of the mechanical characteristics of resin bond composite abrasives with different structures based on the porous concentration. The composite abrasives were made with phenolic resin and alumina grains. Four different structures were studied from 10 to 30% of porous volume fraction with 50% of grain volume fraction. The concentration of porous and bond in the structure composition were employed to compare the mechanical performance of the prepared composite abrasive. To evaluate the mechanical properties of composites, Impact strength, Young’s Modulus by impulse excitation and flexural strength were realized. It was observed that as the porosity is higher, the impact resistance (absorbed energy) is lower, which confirms the lower resistance produced by the surface area contact (grain/binder) and a greater accumulation of tension in the binder material, the higher porosity value, higher the flexural strength value until 20% of porosity. Samples with higher volumes level of porosity presented lower Young’s Modulus but the presence of pores produced by volatiles by-products (mainly water) should act as stress concentrators, thus favoring lower mechanical properties at the resin-grain interface.

2021 ◽  
Vol 1016 ◽  
pp. 18-23
Author(s):  
Toshikazu Akahori ◽  
Shota Ino ◽  
Tomokazu Hattori

Recently, biomaterial α + β type Ti alloys with relatively low Young’s modulus and high specific strength have been widely used all over the world. Martensite (M) phase in α + β type Ti alloy has been reported to improve the toughness and ductility, therefore, there is high possibility of improvement in the mechanical properties easily by controlling the volume fraction of M phase. In this study, the change in mechanical properties of α + β type Ti-6Al-7Nb (Ti67) with various volume fractions of M phase were systematically investigated through the various heat treatments and thermo-mechanical treatments. Microstructures of Ti67 subjected to ST at 1173 K to 1273 K below the temperature of β transus were composed of martensite and primary α phases. The volume fraction of M phase increased with an increase in ST temperature. Tensile strength increased simply with an increase in the volume fraction of M phase, while the elongation, reduction of area and Young’s modulus showed a reverse trend. Fatigue limit of Ti67 subjected to ST at 1243K showed the highest value of 880 MPa.


2015 ◽  
Vol 35 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Rahim Eqra ◽  
Kamal Janghorban ◽  
Habib Daneshmanesh

Abstract Because of extraordinary physical, chemical and mechanical properties, graphene nanosheets (GNS) are suitable fillers for optimizing the properties of different polymers. In this research, the effect of GNS content (up to 1 wt.%) on tensile and flexural properties, morphology of fracture surface, and toughening mechanism of epoxy were investigated. Results of mechanical tests showed a peak for tensile and flexural strength of samples with 0.1 wt.% GNS such that the tensile and flexural strength improved by 13% and 3.3%, respectively. The Young’s modulus and flexural modulus increased linearly with GNS content, although the behavior of the Young’s modulus was more remarkable. Morphological investigations confirmed this behavior because the GNS dispersion in the epoxy matrix was uniform at lower contents and agglomerated at higher contents. Finally, microscopical observation showed that the major toughening mechanism of graphene-epoxy nanocomposites was crack path deflection, which changed the mirror fracture surface of the pure epoxy to rough surface.


2021 ◽  
Vol 21 (2) ◽  
pp. 7-11
Author(s):  
Ahmed Mansoor Abbood ◽  
Haider K. Mehbes ◽  
Abdulkareem. F. Hasan

In this study, glass-filled epoxy functionally graded material (FGM) was prepared by adopting the hand lay-up method. The vertical gravity casting was used to produce a continuous variation in elastic properties. A 30 % volume fraction of glass ingredients that have mean diameter 90 μm was spread in epoxy resin (ρ = 1050 kg/m3). The mechanical properties of FGM were evaluated according to ASTM D638. Experimental results showed that a gradually relationship between Young’s modulus and volume fraction of glass particles, where the value of Young’s modulus at high concentration of glass particles was greater than that at low concentration, while the value of Poisson’s ratio at high concentration of glass particles was lower than that at low concentration. The manufacture of this FG beam is particularly important and useful in order to benefit from it in the field of various fracture tests under dynamic or cyclic loads.


2013 ◽  
Vol 761 ◽  
pp. 83-86
Author(s):  
Hideaki Sano ◽  
Junichi Morisaki ◽  
Guo Bin Zheng ◽  
Yasuo Uchiyama

Effects of carbon nanotubes (CNT) addition on mechanical properties, electric conductivity and oxidation resistance of CNT/Al2O3-TiC composite were investigated. It was found that flexural strength, Young’s modulus and fracture toughness of the composites were improved by addition of more than 2 vol%-CNT. In the composites with more than 3 vol%-CNT, the oxidation resistance of the composite was degraded. In comparison with Al2O3-26vol%TiC sample as TiC particle-percolated sample, the Al2O3-12vol%TiC-3vol%CNT sample, which is not TiC particle-percolated sample, shows almost the same mechanical properties and electric conductivity, and also shows thinner oxidized region after oxidation at 1200°C due to less TiC in the composite.


2020 ◽  
Author(s):  
Jackie E. Kendrick ◽  
Lauren N. Schaefer ◽  
Jenny Schauroth ◽  
Andrew F. Bell ◽  
Oliver D. Lamb ◽  
...  

Abstract. Volcanoes represent one of the most critical geological settings for hazard modelling due to their propensity to both unpredictably erupt and collapse, even in times of quiescence. Volcanoes are heterogeneous at multiple scales, from porosity which is variably distributed and frequently anisotropic to strata that are laterally discontinuous and commonly pierced by fractures and faults. Due to variable and, at times, intense stress and strain conditions during and post-emplacement, volcanic rocks span an exceptionally wide range of physical and mechanical properties. Understanding the constituent materials' attributes is key to improving the interpretation of hazards posed by the diverse array of volcanic complexes. Here, we examine the spectrum of physical and mechanical properties presented by a single dome-forming eruption at a dacitic volcano, Mount Unzen (Japan) by testing a number of isotropic and anisotropic lavas in tension and compression and using monitored acoustic emission (AE) analysis. The lava dome was erupted as a series of 13 lobes between 1991–1995, and its ongoing instability means much of the volcano and its surroundings remain within an exclusion zone today. During a field campaign in 2015, we selected 4 representative blocks as the focus of this study. The core samples from each block span range in porosity from 9.14 to 42.81 %, and permeability ranges from 1.54 × 10−14 to 2.67 × 10−10 m2 (from 1065 measurements). For a given porosity, sample permeability varies by > 2 orders of magnitude is lower for macroscopically anisotropic samples than isotropic samples of similar porosity. An additional 379 permeability measurements on planar block surfaces ranged from 1.90 × 10−15 to 2.58 × 10−12 m2, with a single block having higher standard deviation and coefficient of variation than a single core. Permeability under confined conditions showed that the lowest permeability samples, whose porosity largely comprises microfractures, are most sensitive to effective pressure. The permeability measurements highlight the importance of both scale and confinement conditions in the description of permeability. The uniaxial compressive strength (UCS) ranges from 13.48 to 47.80 MPa, and tensile strength (UTS) using the Brazilian disc method ranges from 1.30 to 3.70 MPa, with crack-dominated lavas being weaker than vesicle-dominated materials of equivalent porosity. UCS is lower in saturated conditions, whilst the impact of saturation on UTS is variable. UCS is between 6.8 and 17.3 times higher than UTS, with anisotropic samples forming each end member. The Young's modulus of dry samples ranges from 4.49 to 21.59 GPa and is systematically reduced in water-saturated tests. The interrelation of porosity, UCS, UTS and Young's modulus was modelled with good replication of the data. Acceleration of monitored acoustic emission (AE) rates during deformation was assessed by fitting Poisson point process models in a Bayesian framework. An exponential acceleration model closely replicated the tensile strength tests, whilst compressive tests tended to have relatively high early rates of AEs, suggesting failure forecast may be more accurate in tensile regimes, though with shorter warning times. The Gutenberg-Richter b-value has a negative correlation with connected porosity for both UCS and UTS tests which we attribute to different stress intensities caused by differing pore networks. b-value is higher for UTS than UCS, and typically decreases (positive Δb) during tests, with the exception of cataclastic samples in compression. Δb correlates positively with connected porosity in compression, and negatively in tension. Δb using a fixed sampling length may be a more useful metric for monitoring changes in activity at volcanoes than b-value with an arbitrary starting point. Using coda wave interferometry (CWI) we identify velocity reductions during mechanical testing in compression and tension, the magnitude of which is greater in more porous samples in UTS but independent of porosity in UCS, and which scales to both b-value and Δb. Yet, saturation obscures velocity changes caused by evolving material properties, which could mask damage accrual or source migration in water-rich environments such as volcanoes. The results of this study highlight that heterogeneity and anisotropy within a single system not only add uncertainty but also have a defining role in the channelling of fluid flow and localisation of strain that dictate a volcano's hazards and the geophysical indicators we use to interpret them.


2021 ◽  
Vol 32 (2) ◽  
pp. 87-104
Author(s):  
Pui-Voon Yap ◽  
Ming-Yeng Chan ◽  
Seong-Chun Koay

This research work highlights the mechanical properties of multi-material by fused deposition modelling (FDM). The specimens for tensile and flexural test have been printed using polycarbonate (PC) material at different combinations of printing parameters. The effects of varied printing speed, infill density and nozzle diameter on the mechanical properties of specimens have been investigated. Multi-material specimens were fabricated with acrylonitrile butadiene styrene (ABS) as the base material and PC as the reinforced material at the optimum printing parameter combination. The specimens were then subjected to mechanical testing to observe their tensile strength, Young’s modulus, percentage elongation, flexural strength and flexural modulus. The outcome of replacing half of ABS with PC to create a multi-material part has been examined. As demonstrated by the results, the optimum combination of printing parameters is 60 mm/s printing speed, 15% infill density and 0.8 mm nozzle diameter. The combination of ABS and PC materials as reinforcing material has improved the tensile strength (by 38.46%), Young’s modulus (by 23.40%), flexural strength (by 23.90%) and flexural modulus (by 37.33%) while reducing the ductility by 14.31% as compared to pure ABS. The results have been supported by data and graphs of the analysed specimens.


2019 ◽  
Vol 5 (5) ◽  
pp. 1007-1019 ◽  
Author(s):  
Babar Ali ◽  
Liaqat Ali Qureshi ◽  
Ali Raza ◽  
Muhammad Asad Nawaz ◽  
Safi Ur Rehman ◽  
...  

Despite plain cement concrete presenting inferior performance in tension and adverse environmental impacts, it is the most widely used construction material in the world. Consumption of fibers and recycled coarse aggregates (RCA) can add ductility and sustainability to concrete. In this research, two mix series (100%NCA, and 100%RCA) were prepared using four different dosages of GF (0%GF, 0.25%GF, 0.5%GF, and 0.75%GF by volume fraction).  Mechanical properties namely compressive strength, splitting tensile strength, and flexural strength of each concrete mixture was evaluated at the age of 28 days. The results of testing indicated that the addition of GF was very useful in enhancing the split tensile and flexural strength of both RCA and NCA concrete. Compressive strength was not highly sensitive to the addition of GF. The loss in strength that occurred due to the incorporation of RCA was reduced to a large extent upon the inclusion of GF. GF caused significant improvements in the split tensile and flexural strength of RCA concrete. Optimum dosage of GF was determined to be 0.25% for NCA, and 0.5% for RCA concrete respectively, based on the results of combined mechanical performance (MP).


2011 ◽  
Vol 8 (2) ◽  
pp. 551-560
Author(s):  
Baghdad Science Journal

In this study, composite materials were prepared using unsaturated polyester resin as binder with two types of fillers (sawdust and chopped reeds). The molding method is used to prepare sheets of UPE / sawdust composite and UPE / chopped reeds composite. The mechanical properties were studied including flexural strength and Young's modulus for the samples at normal conditions (N.C). The Commercial wood, UPE and its composite samples were immersed in water for about 30 days to find the weight gain (Mt%) of water for the samples, also to find the effect of water on their flexural strength and Young's modulus. The results showed that the samples of UPE / chopped reeds composite gained highest values of flexural strength (24.5 MPa) and Young's modulus (5.1 GPa) as compared with other composites at (N.C). The results showed that the wet samples of sawdust composite have lowest values of weight gain (Mt %) of water (0.043%) as compared with other composites after immersion. Also it’s showed a slight decrease in values of Young's modulus for all the samples after immersion as compared with the samples at (N.C). Finally it’s showed a slight decrease in values of flexural strength for all the samples except for the composite material formed from UPE / chopped reeds which showed an increase in the value of flexural strength after immersion, where the wet samples of UPE / chopped reeds composite gained (29 MPa) as compared with the samples at (N.C).


2011 ◽  
Vol 146 ◽  
pp. 12-26 ◽  
Author(s):  
A. Gherissi ◽  
R.Ben Cheikh ◽  
E. Dévaux ◽  
Fethi Abbassi

In this study, we present the manufacturing process of two new composites materials in the form of long fibers of polylactic-acid (PLA) or polypropylene (PP), reinforced by cellulose whiskers micro-fibers loads. In order to evaluate the mechanical properties of these advanced materials, a several uniaxial tensile tests were carried out. The PP and the PLA have initially been spinning without the addition of cellulose whiskers micro-fibers. In order to study the effects of cellulose whiskers micro-fibers reinforcements in the Mechanical behavior of the PLA and PP filaments, we determinate the proprieties of these advanced material from the tensile results. For the PP composite filaments material case, the whiskers reinforcement increases Young's modulus and failure resistance, but it reduces the limit strength failure. For the PLA composites the addition of 1% wt of cellulose whiskers from the total volume fraction of the material, increase the Young’s modulus more than 50% and a decrease of the failure resistance and the limit strength of composite. The obtained composites fibers are very rigid and brittle. What follows, that the addition of cellulose whiskers micro fibers in PP matrix, provides mechanical properties more convenient compared to the PLA matrix.


2020 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Nhan Thi Thanh Nguyen ◽  
Obunai Kiyotaka ◽  
Okubo Kazuya ◽  
Fujii Toru ◽  
Shibata Ou ◽  
...  

In this research, three kinds of carbon fiber (CF) with lengths of 1, 3, and 25 mm were prepared for processing composite. The effect of submicron glass fiber addition (sGF) on mechanical properties of composites with different CF lengths was investigated and compared throughout static tests (i.e., bending, tensile, and impact), as well as the tension-tension fatigue test. The strengths of composites increased with the increase of CF length. However, there was a significant improvement when the fiber length changed from 1 to 3 mm. The mechanical performance of 3 and 25 mm was almost the same when having an equal volume fraction, except for the impact resistance. Comparing the static strengths when varying the sGF content, an improvement of bending strength was confirmed when sGF was added into 1 mm composite due to toughened matrix. However, when longer fiber was used and fiber concentration was high, mechanical properties of composite were almost dependent on the CF. Therefore, the modification effect of matrix due to sGF addition disappeared. In contrast to the static strengths, the fatigue durability of composites increased proportionally to the content of glass fiber in the matrix, regardless to CF length.


Sign in / Sign up

Export Citation Format

Share Document