New Standard for Assessment of Structural Integrity for Existing Load-Bearing Structures-Norsok N-006

Author(s):  
Gunnar Solland ◽  
Inge Lotsberg ◽  
Lars G. Bjo̸rheim ◽  
Gerhard Ersdal ◽  
Vidar-Andre´ Gjerstad ◽  
...  

An increasing number of platforms in the Norwegian continental shelf are reaching their design life. For various reasons these platforms will require an assessment of their structural integrity. When performing these assessments the engineer is faced with tasks where little guidance is found in design standards, for several reasons. The two most important being: 1) The analyses that is performed in a typical assessment of existing structure is often applying very advanced techniques and methodology that seldom is used in design of new structures, as the cost of doing advanced analysis is relatively low compared to replacement of an existing structure, but relatively high compared to moderate additions of e.g. steel in the design of a new structure. 2) Design standards are based on theories, methods and experience for structures in a given design life (e.g. fatigue design and corrosion protection design). When this design life is extended, sound methods for ensuring that the structures are still sufficient safe is needed. Such methods will normally be “condition based design”, where inspection, maintenance and repairs are included in the assessment in integrated way. Such methods are not given in normal design standards. For these reasons a new NORSOK standard is developed that gives recommendation on how to deal with the specific aspects that engineers meet when performing assessments of structures in general, but also specifically for assessment for life extension. The standard is named “Standard for Assessment of Structural Integrity for Existing Load-bearing Structures” and is issued as a NORSOK standard and given the number N-006 [1]. The topics that are covered in the standard include: Shut down and unmanning criteria for platforms not meeting ordinary requirements, specific issues for determination of ultimate capacities by use of non-linear methods, cyclic capacity checks, fatigue life extension, requirements to in-service inspection etc. The paper describes the background and the content of the new standard and it presents examples of recommendations given. The role of the new standard in the Norwegian regulatory system is shown.

Author(s):  
Abe Nezamian ◽  
Joshua Altmann

The ageing of offshore infrastructure presents a constant and growing challenge for operators. Ageing is characterised by deterioration, change in operational conditions or accidental damages which, in the severe operational environment offshore, can be significant with serious consequences for installation integrity if not managed adequately and efficiently. An oil field consisting of twelve well head platforms, a living quarter platform (XQ), a flare platform (XFP) and a processing platform (XPA) are the focus of this paper, providing an overview of the integrity assessment process. In order to ensure technical and operational integrity of these ageing facilities, the fitness for service of these offshore structures needs to be maintained. Assessments of the structural integrity of thirteen identified platforms under existing conditions were undertaken as these platforms are either nearing the end of their design life or have exceeded more than 50% of their design life. Information on history, characteristic data, condition data and inspection results were collected to assess the current state and to predict the future state of the facility for possible life extension. The information included but was not limited to as built data, brown fields modifications, additional risers and clamp-on conductors and incorporation of subsea and topside inspection findings. In-service integrity assessments, pushover analyses, corrosion control and cathodic protection assessments and weight control reports were completed to evaluate the integrity of these facilities for requalification to 2019 and life extension to 2030. The analytical models and calculations were updated based on the most recent inspection results and weight control reports. A requalification and life extension report was prepared for each platform to outline the performance criteria acceptance to achieve requalification until 2019 and life extension until 2030. This paper documents the methodology to assess the platform structural integrity in order to evaluate platform integrity for the remaining and extended design life. An overview of various aspects of ageing related to these offshore facilities, representing risk to the integrity, the required procedures and re assessment criteria for deciding on life extension of these facilities is presented. This paper also provides an overall view of the structural requirements, justifications and calibrations of the original design for the life extension to maintain the safety level by means of maintenance and inspection programs balancing the ageing mechanisms and improving the reliability of assessment results.


In implementing fracture mechanics based techniques for the design and life extension of structural components, it is necessary to establish the reliability with which various flaw sizes and types can be detected and characterized. Traditionally, this has been accomplished through extensive experimental demonstration programmes. This paper discusses present efforts to use model predictions to reduce the required amount of experimentation, and hence the cost, of such programmes. Formalisms whereby the extensive elastic-wave theoretical scattering effort of the last decade can be applied to practical problems are first reviewed. This is followed by several specific examples which have occurred in the nuclear and aerospace industries. The paper concludes with the identification of some important remaining theoretical problems and a discussion of possible strategies for future implementation of model calculations as tools in structural integrity programmes.


Author(s):  
Andrew Francis ◽  
Mike Gardiner ◽  
Marcus McCallum

Pipeline designers and operators recognize that the commercial viability of operating high-pressure gas pipelines decreases with time. This is because the structural integrity levels of the pipeline decrease, due to the action of deterioration processes such as corrosion and fatigue, until the level of mitigation required to ensure adequate safety levels becomes uneconomical. For this reason pipelines are assigned a nominal design life of typically 40 years. This paper describes the application of structural reliability analysis to a high-pressure natural gas pipeline having both onshore and offshore sections, in order to determine the extent to which the asset life could be increased beyond the design life without any significant reduction in reliability and hence safety levels. The approach adopted was to identify the credible failure modes that could affect each of the onshore and offshore sections and determine the probability of failure due to each failure mode taking account of the uncertainties in the parameters that affect each mode. Based on a detailed consideration of the results of the study it was concluded that the life of the asset considered here could be extended to 60 years without any significant reduction in safety levels. Moreover, it was concluded that if certain mitigating measures were to be implemented in the future then it would be possible to increase the asset life to significantly more than 60 years.


Author(s):  
A. Stacey ◽  
M. Birkinshaw ◽  
J. V. Sharp

With many offshore installations in the UK sector of the North Sea now reaching or being in excess of their original anticipated design life, there is a particular need to evaluate approaches to structural integrity management by offshore operators. Ageing processes can affect the structural integrity of the installation and demonstration of adequate performance beyond its original design life is thus a necessary requirement. This paper addresses the issues relevant to the life extension of ageing installations.


Author(s):  
Sami Soppela ◽  
Esko Järvenpää

<p>In the cable-stayed bridges the primary cost components of the load-bearing material, in the longitudinal direction of the bridge, are the cables. The longer the bridge, the higher the share of the costs of the load-bearing material. The quantity of the cables and the cost optimized cable and tower topology can be reliably solved, already in very early design stages, using a simple calculation method proposed in this article. The cables are considered as a curtain structure and the cable forces are calculated for the permanent load balance. The solutions are performed mathematically by using integral calculus based on a force length method and a unit bridge concept. The results provide a good idea of the optimum pylon height for both one-pylon and two-pylon bridges. The optimum pylon height depends on the span ratio and the chosen cable system.</p>


2021 ◽  
Author(s):  
Biramarta Isnadi ◽  
Luong Ann Lee ◽  
Sok Mooi Ng ◽  
Ave Suhendra Suhaili ◽  
Quailid Rezza M Nasir ◽  
...  

Abstract The objective of this paper is to demonstrate the best practices of Topside Structural Integrity Management for an aging fleet of more than 200 platforms with about 60% of which has exceeded the design life. PETRONAS as the operator, has established a Topside Structural Integrity Management (SIM) strategy to demonstrate fitness of the offshore topside structures through a hybrid philosophy of time-based inspection with risk-based maintenance, which is in compliance to API RP2SIM (2014) inspection requirements. This paper shares the data management, methodology, challenges and value creation of this strategy. The SIM process adopted in this work is in compliance with industry standards API RP2SIM, focusing on Data-Evaluation-Strategy-Program processes. The operator HSE Risk Matrix is adopted in risk ranking of the topside structures. The main elements considered in developing the risk ranking of the topside structures are the design and assessment compliance, inspection compliance and maintenance compliance. Effective methodology to register asset and inspection data capture was developed to expedite the readiness of Topside SIM for a large aging fleet. The Topside SIM is being codified in the operator web-based tool, Structural Integrity Compliance System (SICS). Identifying major hazards for topside structures were primarily achieved via data trending post implementation of Topside SIM. It was then concluded that metal loss as the major threat. Further study on effect of metal loss provides a strong basis to move from time-based maintenance towards risk-based maintenance. Risk ranking of the assets allow the operator to prioritize resources while managing the risk within ALARP level. Current technologies such as drone and mobile inspection tools are deployed to expedite inspection findings and reporting processes. The data from the mobile inspection tool is directly fed into the web based SICS to allow reclassification of asset risk and anomalies management.


Author(s):  
I. I. Vedyakov ◽  
D. V. Konin ◽  
A. A. Egorova ◽  
I. V. Rtishcheva

The present work provides an overview and analysis of scientific, technical, regulatory, and methodical Russian and foreign literature regarding using glass as a material for load-bearing structures of buildings. In the absence of design standards, an experimental study of usually one or two samples is necessary each time glass structure is used; however, this is insufficient to determine the distinct pattern of material performance. Since jointing the glass structures has been rarely studied, the number of tests is minimal, thus preventing establishing the unambiguous material operation and its calculated physical and mechanical characteristics. The article considers and evaluates the test results of glass structures obtained by various methods. The particular values of ultimate stresses and deformation modulus lie in a wide range. The technology, manufacturing process, and starting materials have a significant influence on the characteristics of glass, including multilayer glass. This article stresses the need for developing regulatory technical and methodical documents, the design and testing standards for glass structures and their jointing. It is necessary to classify load-bearing glass structures by various criteria.


2021 ◽  
Author(s):  
Carol Johnston ◽  
Matthew Doré

Abstract Now that bolted flanges rather than grouted connections are used to join the transition piece to the monopile in offshore wind turbine towers, many large bolts are being used in applications which subject them to fatigue loads. The bolts in these ring flanges are typically M64 or M72 in size (ie 64mm of 72mm nominal diameter). The fatigue design codes, BS 7608, DNVGL-RP-C203 and Eurocode 3 do provide S-N curves for threaded fasteners, but the reference diameter in those documents is 25mm or 30mm. A thickness correction is provided, to account for larger diameter bolts, but this was originally derived by analysis of the performance of welded joints. It is unclear whether the S-N curves and the recommended thickness correction are appropriate for larger diameter threaded fasteners. The offshore wind industry usually specifies hot dip galvanised bolts, to provide some corrosion protection in the offshore environment. Again, there is uncertainty over whether the S-N curves in fatigue design standards apply to bolts with a galvanised coating. Since the fatigue design codes provide S-N curves for air, free corrosion or seawater with cathodic protection, it is also unclear which of these should be used to predict the fatigue performance of bolts with a galvanised coating. In order to provide data to address these uncertainties, hot-dip galvanised, grade 10.9, M72 bolts from two manufacturers were tested in both air and a seawater environment. In order to represent the conditions experienced by bolts in internal ring flanges, the artificial seawater was sprayed onto the bolts during testing. Tests were conducted with a mean stress corresponding to 70% of the specified minimum 0.2% proof strength of the bolts. Tests were also performed in air, on uncoated M72 bolts, and uncoated M64 bolts for comparison. The results suggest that the current thickness correction in DNVGL RP C203 and BS 7608 is appropriate for M72 bolts. The results in air from the galvanised bolts were below those from uncoated bolts. Although the galvanised results were above the thickness corrected in-air standard design curves (BS7608 Class X -20%, DNVGL Class G and DNVGL ST 0126 FAT 50), they were below the mean curves, suggesting that the performance of galvanised bolts is slightly lower than the existing recommendations.


Author(s):  
Torgeir Moan

Based on relevant accident experiences with oil and gas platforms, a brief overview of structural integrity management of offshore structures is given; including an account of adequate design criteria, inspection, repair and maintenance as well as quality assurance and control of the engineering processes. The focus is on developing research based design standards for Accidental Collapse Limit States to ensure robustness or damage tolerance in view damage caused by accidental loads due to operational errors and to some extent abnormal structural damage due to fabrication errors. Moreover, it is suggested to provide robustness in cases where the structural performance is sensitive to uncertain parameters. The use of risk assessment to aid decisions in lieu of uncertainties affecting the performance of novel and existing offshore structures, is briefly addressed.


Author(s):  
John V. Sharp ◽  
Edmund G. Terry ◽  
John Wintle

Many offshore installations in the North Sea have now exceeded their original design life and are in a life extension phase. A Framework of six processes has been developed for the management of ageing of Safety Critical Elements (SCEs) in offshore installations. The processes include an analysis of the effect of ageing modes on SCE performance. Examples of performance indicators for typical SCEs are proposed based on how their condition and performance as may be affected by physical deterioration and other effects of ageing. Indicators for calibrating the maturity and effectiveness of the management processes are also suggested.


Sign in / Sign up

Export Citation Format

Share Document