Qualification of Multi-Composite Hoses for STS LNG Transfer

Author(s):  
Gerard van der Weijde ◽  
Niels Mallon

Reliable transfer systems are a key element in developing floating LNG technology. Multi-composite hoses may prove to be a reliable and cost effective solution. TNO, the Dutch contract research organisation, has executed an extensive test program on the multi-composite hose of Gutteling B.V. for Ship-to-Ship (STS) LNG transfers. It has resulted in qualification of the hose in accordance to EN1474-part 2 [2]. This hose is the first product that has been qualified in accordance with this new internationally accepted standard. The test program was performed in close cooperation with Gutteling B.V., EXMAR and DNV. It focused on the mechanical and flow behaviour at ambient and cryogenic operating conditions. In excess of the EN1474-requirements, a multi-level test programme is performed, more samples are tested and more extreme load combinations are applied. The purpose was to provide a data set that enables transfer system qualification in accordance with EN1474-part 3. The hose appears to have a complex mechanical behaviour: elastic non-linear, coupling of deformation modes, hysteric behaviour and large damping. Damage tolerance tests, such as impact and crushing, show that the composite hose performs exceptionally. This paper summarises the test program and describes some of the tests performed in excess of the requirements. In particular, testing for off-spec operation conditions, fatigue and creep is addressed. Absences of engineering models to predict fatigue and creep performance are future obstacles for realising the interesting proposition of multi-composite hoses.

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1811 ◽  
Author(s):  
Alejandro Gismero ◽  
Erik Schaltz ◽  
Daniel-Ioan Stroe

The state of charge (SOC) and state of health (SOH) are two crucial indicators needed for a proper and safe operation of the battery. Coulomb counting is one of the most adopted and straightforward methods to calculate the SOC. Although it can be implemented for all kinds of applications, its accuracy is strongly dependent on the operation conditions. In this work, the behavior of the batteries at different current and temperature conditions is analyzed in order to adjust the charge measurement according to the battery efficiency at the specific operating conditions. The open-circuit voltage (OCV) is used to reset the SOC estimation and prevent the error accumulation. Furthermore, the SOH is estimated by evaluating the accumulated charge between two different SOC using a recursive least squares (RLS) method. The SOC and SOH estimations are verified through an extensive test in which the battery is subjected to a dynamic load profile at different temperatures.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 525
Author(s):  
Ran Duan ◽  
Jie Liu ◽  
Jianzhong Zhou ◽  
Pei Wang ◽  
Wei Liu

The prognostic is the key to the state-based maintenance of Francis turbine units (FTUs), which consists of performance state evaluation and degradation trend prediction. In practical engineering environments, there are three significant difficulties: low data quality, complex variable operation conditions, and prediction model parameter optimization. In order to effectively solve the above three problems, an ensemble prognostic method of FTUs using low-quality data under variable operation conditions is proposed in this study. Firstly, to consider the operation condition parameters, the running data set of the FTU is constructed by the water head, active power, and vibration amplitude of the top cover. Then, to improve the robustness of the proposed model against anomaly data, the density-based spatial clustering of applications with noise (DBSCAN) is introduced to clean outliers and singularities in the raw running data set. Next, considering the randomness of the monitoring data, the healthy state model based on the Gaussian mixture model is constructed, and the negative log-likelihood probability is calculated as the performance degradation indicator (PDI). Furthermore, to predict the trend of PDIs with confidence interval and automatically optimize the prediction model on both accuracy and certainty, the multiobjective prediction model is proposed based on the non-dominated sorting genetic algorithm and Gaussian process regression. Finally, monitoring data from an actual large FTU was used for effectiveness verification. The stability and smoothness of the PDI curve are improved by 3.2 times and 1.9 times, respectively, by DBSCAN compared with 3-sigma. The root-mean-squared error, the prediction interval normalized average, the prediction interval coverage probability, the mean absolute percentage error, and the R2 score of the proposed method achieved 0.223, 0.289, 1.000, 0.641%, and 0.974, respectively. The comparison experiments demonstrate that the proposed method is more robust to low-quality data and has better accuracy, certainty, and reliability for the prognostic of the FTU under complex operating conditions.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


Author(s):  
Q. Kim ◽  
S. Kayali

Abstract In this paper, we report on a non-destructive technique, based on IR emission spectroscopy, for measuring the temperature of a hot spot in the gate channel of a GaAs metal/semiconductor field effect transistor (MESFET). A submicron-size He-Ne laser provides the local excitation of the gate channel and the emitted photons are collected by a spectrophotometer. Given the state of our experimental test system, we estimate a spectral resolution of approximately 0.1 Angstroms and a spatial resolution of approximately 0.9 μm, which is up to 100 times finer spatial resolution than can be obtained using the best available passive IR systems. The temperature resolution (<0.02 K/μm in our case) is dependent upon the spectrometer used and can be further improved. This novel technique can be used to estimate device lifetimes for critical applications and measure the channel temperature of devices under actual operating conditions. Another potential use is cost-effective prescreening for determining the 'hot spot' channel temperature of devices under normal operating conditions, which can further improve device design, yield enhancement, and reliable operation. Results are shown for both a powered and unpowered MESFET, demonstrating the strength of our infrared emission spectroscopy technique as a reliability tool.


Author(s):  
Simona Babiceanu ◽  
Sanhita Lahiri ◽  
Mena Lockwood

This study uses a suite of performance measures that was developed by taking into consideration various aspects of congestion and reliability, to assess impacts of safety projects on congestion. Safety projects are necessary to help move Virginia’s roadways toward safer operation, but can contribute to congestion and unreliability during execution, and can affect operations after execution. However, safety projects are assessed primarily for safety improvements, not for congestion. This study identifies an appropriate suite of measures, and quantifies and compares the congestion and reliability impacts of safety projects on roadways for the periods before, during, and after project execution. The paper presents the performance measures, examines their sensitivity based on operating conditions, defines thresholds for congestion and reliability, and demonstrates the measures using a set of Virginia safety projects. The data set consists of 10 projects totalling 92 mi and more than 1M data points. The study found that, overall, safety projects tended to have a positive impact on congestion and reliability after completion, and the congestion variability measures were sensitive to the threshold of reliability. The study concludes with practical recommendations for primary measures that may be used to measure overall impacts of safety projects: percent vehicle miles traveled (VMT) reliable with a customized threshold for Virginia; percent VMT delayed; and time to travel 10 mi. However, caution should be used when applying the results directly to other situations, because of the limited number of projects used in the study.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Naef A. A. Qasem ◽  
Ramy H. Mohammed ◽  
Dahiru U. Lawal

AbstractRemoval of heavy metal ions from wastewater is of prime importance for a clean environment and human health. Different reported methods were devoted to heavy metal ions removal from various wastewater sources. These methods could be classified into adsorption-, membrane-, chemical-, electric-, and photocatalytic-based treatments. This paper comprehensively and critically reviews and discusses these methods in terms of used agents/adsorbents, removal efficiency, operating conditions, and the pros and cons of each method. Besides, the key findings of the previous studies reported in the literature are summarized. Generally, it is noticed that most of the recent studies have focused on adsorption techniques. The major obstacles of the adsorption methods are the ability to remove different ion types concurrently, high retention time, and cycling stability of adsorbents. Even though the chemical and membrane methods are practical, the large-volume sludge formation and post-treatment requirements are vital issues that need to be solved for chemical techniques. Fouling and scaling inhibition could lead to further improvement in membrane separation. However, pre-treatment and periodic cleaning of membranes incur additional costs. Electrical-based methods were also reported to be efficient; however, industrial-scale separation is needed in addition to tackling the issue of large-volume sludge formation. Electric- and photocatalytic-based methods are still less mature. More attention should be drawn to using real wastewaters rather than synthetic ones when investigating heavy metals removal. Future research studies should focus on eco-friendly, cost-effective, and sustainable materials and methods.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 581
Author(s):  
Yongbae Kim ◽  
Juyong Back ◽  
Jongweon Kim

A tachograph in a vehicle records the vehicle operating conditions, such as speed, distance, brake operation conditions, acceleration, GPS information, etc., in intervals of one second. For accidents, the tachograph records information, such as the acceleration and direction of a vehicle traveling in intervals of 1/100 s for 10 s before and after the accident occurs as collision data. A vehicle equipped with a tachograph is obliged to upload operation data to administrative organizations periodically via other auxiliary storage devices like a USB attached external memory or online wireless communication. If there is a problem with the recorded contents, data may be at risk of being tampered with during the uploading process. This research proposed tamper-resistant technology based on blockchain for data in online and offline environments. The suggested algorithm proposed a new data recording mechanism that operates in low-level hardware of digital tachographs for tamper-resistance in light blockchains and on/offline situations. The average encoding time of the proposed light blockchain was 1.85 ms/Mb, while the average decoding time was 1.65 ms/Mb. With the outliers in statistical tests removed, the estimated average encoding and decoding time was 1.32 ms/Mb and 1.29 ms/Mb, respectively, and the tamper verification test detected all the tampered data.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 412
Author(s):  
Mirosław K. Szukiewicz ◽  
Krzysztof Kaczmarski

A dynamic model of the hydrogenation of benzene to cyclohexane reaction in a real-life industrial reactor is elaborated. Transformations of the model leading to satisfactory results are presented and discussed. Operating conditions accepted in the simulations are identical to those observed in the chemical plant. Under those conditions, some components of the reaction mixture vanish, and the diffusion coefficients of the components vary along the reactor (they are strongly concentration-dependent). We came up with a final reactor model predicting with reasonable accuracy the reaction mixture’s outlet composition and temperature profile throughout the process. Additionally, the model enables the anticipation of catalyst activity and the remaining deactivated catalyst lifetime. Conclusions concerning reactor operation conditions resulting from the simulations are presented as well. Since the model provides deep insight into the process of simulating, it allows us to make knowledge-based decisions. It should be pointed out that improvements in the process run, related to operating conditions, or catalyst application, or both on account of the high scale of the process and its expected growth, will remarkably influence both the profits and environmental protection.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Mercedes Perullini ◽  
Mariano Calcabrini ◽  
Matías Jobbágy ◽  
Sara A. Bilmes

Abstract:The encapsulation of living cells within inorganic silica hydrogels is a promising strategy for the design of biosensors, modular bioreactors, and bioremediation devices, among other interesting applications, attracting scientific and technological interest. These hostguest multifunctional materials (HGFM) combine synergistically specific biologic functions of their guest with those of the host matrix enhancing their performance. Although inorganic immobilization hosts present several advantages over their (bio)polymer-based counterparts in terms of chemical and physical stability, the direct contact of cells with silica precursors during synthesis and the constraints imposed by the inorganic host during operating conditions have proved to influence their biological response. Recently, we proposed an alternative two-step procedure including a pre-encapsulation in biocompatible polymers such as alginates in order to confer protection to the biological guest during the inorganic and more cytotoxic synthesis. By means of this procedure, whole cultures of microorganisms remain confined in small liquid volumes generated inside the inorganic host, providing near conventional liquid culture conditions.Moreover, the fact of protecting the biological guest during the synthesis of the host, allows extending the synthesis parameters beyond biocompatible conditions, tuning the microstructure of the matrix. In turn, the microstructure (porosity at the nanoscale, radius of gyration of particles composing the structure, and fractal dimension of particle clusters) is determinant of macroscopic parameters, such as optical quality and transport properties that govern the encapsulation material’s performance. Here, we review the most interesting applications of the two-step procedure, making special emphasis on the optimization of optical, transport and mechanical properties of the host as well as in the interaction with the guest during operation conditions.


2021 ◽  
Vol 154 (A2) ◽  
Author(s):  
R C Leaper ◽  
M R Renilson

Underwater noise pollution from shipping is of considerable concern for marine life, particularly due to the potential for raised ambient noise levels in the 10-300Hz frequency range to mask biological sounds. There is widespread agreement that reducing shipping noise is both necessary and feasible, and the International Maritime Organization is actively working on the issue. The main source of noise is associated with propeller cavitation, and measures to improve propeller design and wake flow may also reduce noise. It is likely that the noisiest 10% of ships generate the majority of the noise impact, and it may be possible to quieten these vessels through measures that also improve efficiency. However, an extensive data set of full scale noise measurements of ships under operating conditions is required to fully understand how different factors relate to noise output and how noise reduction can be achieved alongside energy saving measures.


Sign in / Sign up

Export Citation Format

Share Document