Extending the Limits for Thick Walled Pipe (D/t<20) for External Pressure and Combined Loading

Author(s):  
Henk Smienk ◽  
Erwan Karjadi ◽  
Steven Huiskes

During the operational and installation phase of submarine pipelines, the collapse and local buckling behaviour is of interest. Existing research [1] shows conservatism in the pure collapse DNV formula for thick walled pipe. The first part of the paper will focus on the collapse behaviour of empty thick walled pipe under external pressure. Using 2D and 3D FE Analysis an investigation into the collapse behaviour of pipe with a D/t < 20 is conducted. The analysis also covers an extensive sensitivity analysis with regard to geometrical imperfections and different material models. The local buckling behaviour during the combined external pressure, bending moment and effective axial force loading encountered in the sagbend is also investigated. To obtain a realistic load path for the sagbend loading, static Flexcom analyses are performed. If the load case is not sufficient to initiate collapse because of the stiffness of the catenary due to the low D/t, the pipe will be bent to the limit state while setting the effective tension to zero. The effect of each sensitivity on the collapse and local buckle behaviour of thick walled pipe in the sagbend including effective axial tension is discussed.

Author(s):  
André C. Nogueira ◽  
Glenn A. Lanan

The capacity of pipelines to resist collapse or local buckling under a combination of external pressure and bending moment is a major aspect of offshore pipeline design. The importance of this loading combination increases as oil and gas projects in ultra deep-water, beyond 2,000-m water depths, are becoming reality. The industry is now accepting, and codes are explicitly incorporating, limit state design concepts such as the distinction between load controlled and displacement controlled conditions. Thus, deep-water pipeline installation and limit state design procedures are increasing the need to understand fundamental principles of offshore pipeline performance. Design codes, such as API 1111 (1999) or DNV (1996, 2000), present equations that quantify pipeline capacities under combined loading in offshore pipelines. However, these equations are based on empirical data fitting, with or without reliability considerations. Palmer (1994) pointed out that “it is surprising to discover that theoretical prediction [of tubular members under combined loading] has lagged behind empirical prediction, and that many of the formula have no real theoretical backup beyond dimensional analysis.” This paper addresses the ultimate strength of pipelines under combined bending and external pressure, especially for diameter-to-thickness ratios, D/t, less than 40, which are typically used for deep water applications. The model is original and has a rational basis. It includes considerations of ovalization, anisotropy (such as those caused by the UOE pipe fabrication process), load controlled, and displaced controlled conditions. First, plastic analysis is reviewed, then pipe local buckling under pure bending is analyzed and used to develop the strength model. Load controlled and displacement controlled conditions are a natural consequence of the formulation, as well as cross section ovalization. Secondly, external pressure effects are addressed. Model predictions compare very favorably to experimental collapse test results.


Author(s):  
Виктор Миронович Варшицкий ◽  
Евгений Павлович Студёнов ◽  
Олег Александрович Козырев ◽  
Эльдар Намикович Фигаров

Рассмотрена задача упругопластического деформирования тонкостенной трубы при комбинированном нагружении изгибающим моментом, осевой силой и внутренним давлением. Решение задачи осуществлено по разработанной методике с помощью математического пакета Matcad численным методом, основанным на деформационной теории пластичности и безмоментной теории оболочек. Для упрощения решения предложено сведение двумерной задачи к одномерной задаче о деформировании балки, материал которой имеет различные диаграммы деформирования при сжатии и растяжении в осевом направлении. Проведено сравнение с результатами численного решения двумерной задачи методом конечных элементов в упругопластической постановке. Результаты расчета по инженерной методике совпадают с точным решением с точностью, необходимой для практического применения. Полученные результаты упругопластического решения для изгибающего момента в сечении трубопровода при комбинированном нагружении позволяют уточнить известное критериальное соотношение прочности сечения трубопровода с кольцевым дефектом в сторону снижения перебраковки. Применение разработанной методики позволяет ранжировать участки трубопровода с непроектным изгибом по степени близости к предельному состоянию при комбинированном нагружении изгибающим моментом, продольным усилием и внутренним давлением. The problem of elastic plastic deformation of a thin-walled pipe under co-binned loading by bending moment, axial force and internal pressure is considered. The problem is solved by the developed method using the Matcad mathematical package by a numerical method based on the deformation theory of plasticity and the momentless theory of shells. To simplify the solution of the problem, it is proposed to reduce a twodimensional problem to a one-dimensional problem about beam deformation, the material of which has different deformation diagrams under compression and tension in the axial direction. Comparison with the results of numerical solution of the two-dimensional problem with the finite element method in the elastic plastic formulation is carried out. The obtained results of the elastic-plastic solution for the bending moment in the pipeline section under combined loading make it possible to clarify criterion ratio of the strength of the pipeline section with an annular defect in the direction of reducing the rejection. Application of the developed approach allows to rank pipeline sections with non-design bending in the steppe close to the limit state under combined loading of the pipeline with bending moment, longitudinal force and internal pressure.


Author(s):  
Erik Levold ◽  
Andrea Restelli ◽  
Lorenzo Marchionni ◽  
Caterina Molinari ◽  
Luigino Vitali

Considering the future development for offshore pipelines, moving towards difficult operating condition and deep/ultra-deep water applications, there is the need to understand the failure mechanisms and better quantify the strength and deformation capacity of corroded pipelines considering the relevant failure modes (collapse, local buckling under internal and external pressure, fracture / plastic collapse etc.). A Joint Industry Project sponsored by ENI E&P and Statoil has been launched with the objective to quantify and assess the strength and deformation capacity of corroded pipes in presence of internal overpressure and axial/bending loading. In this paper: • The State-of-the-Art on strength and deformation capacity of corroded pipes is presented; • The full-scale laboratory tests on corroded pipes under bending moment dominated load conditions, performed at C-FER facilities, are shown together with the calibrated ABAQUS FE Model; • The results of the ABAQUS FEM parametric study are presented.


2021 ◽  
Vol 28 (1) ◽  
pp. 540-554
Author(s):  
Guo Zhang ◽  
Haiyang Zhu ◽  
Qi Wang ◽  
Xiaowen Zhang ◽  
Mingfa Ren ◽  
...  

Abstract The cylindrical filament wound composite overwrapped pressure vessels (COPV) with metal liner has been widely used in spaceflight due to their high strength and low weight. After the autofrettage process, the plastic deformation of the metal liner is constrained by composite winding layers, which introduce depressions to the metal liner that causes local buckling. To predict the local buckling of the inner liner with depressions of the pressure vessel after the autofrettage process, a local buckling analysis method for the metal liner of COPV was developed in this article. The finite element method is used to calculate the overall stress distribution in the pressure vessel before and after the autofrettage process, and the influence of local depressions on the buckling is evaluated. The axial buckling of the pressure vessel under external pressure is analyzed. The control equation of the metal liner with depressions is developed, considering the changes in the pressure and the bending moment of the liner depressions and its vicinity during the loading and unloading process. Taking the cylindrical COPV (38 L) with aluminum alloy liner as an example, the effects of liner thickness, liner radius, the thickness-to-diameter ratio, autofrettage pressure, and the length of straight section on the autofrettage process are discussed. The results show that the thickness of the inner liner has the most significant influence on the buckling of the liner, followed by the length of the straight section and the radius of the inner liner, while the autofrettage pressure has the least influence.


Author(s):  
Hiroyuki Horikawa ◽  
Yoji Tsunasawa ◽  
Hajime Shinkai ◽  
Nobuhisa Suzuki

Upheaval buckling of small diameter gas pipeline occurred due to strong seismic excitation during the 2007 Niigata-ken Chuetsu-Oki earthquake whose diameters were 4″ and smaller. This paper deals with investigation of the upheaval buckling of gas pipes conducted by Ministry of Economy, Trade and Industry of Japan to establish seismic design guidelines to mitigate upheaval buckling. Sand box and field tests were conducted using small diameter pipes to simulate the upheaval buckling behaviors and construct a simple finite element model. The results clarified that the tensile properties of pipe material and pipe-soil interaction were the most effective parameters to explain the buckling behaviors. Interaction curve of pipes can be found in the relationship between compression and bending moment in the combined loading tests. The deformation behaviors of the buried pipe tests followed the interaction curve and local buckling of buried pipes occurred in lower bending moment than that of pipes not buried.


Author(s):  
Eduardo Felipe Pereira da Silva ◽  
Theodoro Antoun Netto

Abstract The objective of this paper is to evaluate the design collapse equations presented in chapter 8 and Annex F of the current standard ISO TR 10400 for casings under external pressure and axial tension. A nonlinear numerical model has been developed to analyze the performance of these equations to predict casing collapse under combined loads. Experimental tests have been performed with different diameters, d/h ratio and steel grade to calibrate the numerical model. The KT model has been assessed previously against different models by API Work Group and it has shown to be reliable to be used as design equations. However, the API Work Group included the KT model in the appendix F of the code as informative. The work done in this paper has confirmed the better performance of KT model for most of the cases analyzed. For combined loading, the API collapse equation results in a simple strength de-rating method, whilst the KT model has achieved similar behavior for low values of axial tension when comparing the experimental results. The axial tension for the casings into the well is likely to be lower than 40% of yield strength. Therefore, the KT model has shown to be more convenient to well design than API equations.


1993 ◽  
Vol 115 (1) ◽  
pp. 15-26 ◽  
Author(s):  
R. Madhavan ◽  
C. D. Babcock ◽  
J. Singer

The paper presents the results from a combined experimental and analytic study on the collapse of long, thick-walled tubes subjected to external pressure and axial tension. The experiments involved tubes of diameter-to-thickness ratio (Dm/t) 10 to 40. Collapse envelopes were obtained for two different pressure-tension loading paths. Collapse tests involving initially ovalized tubes were also carried out. The collapse strength predicted with a two-dimensional elasto-plastic model applying J2 flow rule was in good agreement with the experiments. The results show that the collapse strength under combined loading is strongly influenced by initial ovality and that the shape of the stress-strain curve has a significant influence on the tension-pressure collapse envelope.


Author(s):  
Shulong Liu ◽  
Alastair Walker ◽  
Philip Cooper

Offshore pipeline systems commonly incorporate induction-heating formed bends along flowlines and in pipeline end termination assemblies and spools. In deepwater locations, the pipeline and bends are subjected to various combinations of external pressure, internal pressure, bending moment and temperature changes, during installation, and operation. Although there is a history of research into the limiting loads and failure modes of such bends and pipelines systems there is, as yet, no comprehensive guidance to enable the calculation of the maximum capacity under combined bending and external pressure loading. Conservative guidance is presented in DNV OS-F101 (2007) [1] that proposes increasing the pipe wall thickness to reduce the effect of external pressure collapse effects thus enabling bending formulations relevant to straight pipe to be used. This proposed approach leads to unfeasibly large wall thickness requirements in very deepwater applications. There is therefore a requirement for a method to design deepwater bends for installation and operation conditions with levels of safety comparable with those used in the design of straight sections of pipelines that does not depend on the requirement to increase the wall thickness to the extent proposed in the current DNV guidance. In this study, a nonlinear FE method using ABAQUS is proposed to evaluate the ultimate capacities of induction-heating formed bends. The method takes into account the combined effects of non-linear material properties, initial ovality, wall thinning/thickening, external or internal pressure, internal CRA cladding and temperature change on the ultimate moment capacity of the bend. The numerical model is validated by comparison with available published results. The method developed here is based on the limit state design formulations in the current DNV OS-F101 guidance.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4866
Author(s):  
Jianxing Yu ◽  
Weipeng Xu ◽  
Nianzhong Chen ◽  
Sixuan Jiang ◽  
Shengbo Xu ◽  
...  

In this paper, the effects of different loading paths of axial tension and external pressure on the collapse pressure of sandwich tubes are studied by experiments and finite element models. The difference of the two loading paths is investigated. Eight experiments were carried out to study the influence of different loading paths on pipeline collapse pressure under the same geometric and material parameters. Parameterization studies have been carried out, and the results are in good agreement with the experimental results. The test and finite element results show that the loading path of external pressure first and then the axial tension (P→T) is more dangerous; the collapse pressure of the sandwich pipe is smaller than the other. Through parametric analysis, the influence of the axial tension and the diameter-to-thickness ratio of the inner and outer pipe on the collapse pressure under different loading paths are studied.


2021 ◽  
Author(s):  
Ruud Selker ◽  
Joost Brugmans ◽  
Ping Liu ◽  
Carlos Sicilia

Abstract Internally pressurised pipe behaves differently than externally pressurised pipe. DNVGL-ST-F101 [4], a prevailing standard for the design of submarine pipelines, provides limit-state equations for combined loading that are valid only if the diameter-to-wall-thickness ratio (D/t) is between 15 and 45. A recent study has shown that the results are increasingly conservative for lower values of this ratio if the nett pressure is acting on the pipe’s outside [8], especially if it is below 20. In this paper, the applicability of the limit-state equations for thick-walled pipe with D/t less than 15 and loaded by a nett internal pressure has been investigated. The first step was a fundamental review of the formulations. Next, the predicted capacities were compared with those estimated using a finite-element (FE) model. The results greatly coincided, which indicates that the conservatism underlying the formulations does not depend on D/t. Hence they can be used for design against local buckling under internal overpressure, too, when the ratio is below 15.


Sign in / Sign up

Export Citation Format

Share Document