Study on Deformation and Energy Absorption of Liquid Cabin Under Ballistic Impact

Author(s):  
Zhang Lei ◽  
Zhao Pengduo

Liquid cabin is the most significance part protecting the ship from damage due to high-speed fragments. In order to guide the design of liquid cabin, response regularity of the impact wave in water and the speed of projectile were studied by simulation method. The deformation and energy conversion of liquid cabin in different design were also investigated. The results show that, the existence of a liquid medium can change the energy absorption model of a cabin. The thickness of water layer put significance influence on the deformation and energy absorption model of liquid cabin. Lower the level of the water lead to the free surface truncation effect of impact wave. The asymmetry and locality of the deformation of bulkhead occur to the free surface truncation effect, but it put little effect on energy absorption of liquid cabin.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1602
Author(s):  
Ángel Molina-Viedma ◽  
Elías López-Alba ◽  
Luis Felipe-Sesé ◽  
Francisco Díaz

Experimental characterization and validation of skin components in aircraft entails multiple evaluations (structural, aerodynamic, acoustic, etc.) and expensive campaigns. They require different rigs and equipment to perform the necessary tests. Two of the main dynamic characterizations include the energy absorption under impact forcing and the identification of modal parameters through the vibration response under any broadband excitation, which also includes impacts. This work exploits the response of a stiffened aircraft composite panel submitted to a multi-impact excitation, which is intended for impact and energy absorption analysis. Based on the high stiffness of composite materials, the study worked under the assumption that the global response to the multi-impact excitation is linear with small strains, neglecting the nonlinear behavior produced by local damage generation. Then, modal identification could be performed. The vibration after the impact was measured by high-speed 3D digital image correlation and employed for full-field operational modal analysis. Multiple modes were characterized in a wide spectrum, exploiting the advantages of the full-field noninvasive techniques. These results described a consistent modal behavior of the panel along with good indicators of mode separation given by the auto modal assurance criterion (Auto-MAC). Hence, it illustrates the possibility of performing these dynamic characterizations in a single test, offering additional information while reducing time and investment during the validation of these structures.


Author(s):  
Nicholas R. Jankowski ◽  
Andrew N. Smith ◽  
Brendan M. Hanrahan

Recent high energy density thin film material development has led to an increased interest in pyroelectric energy conversion. Using state-of-the-art lead-zirconate-titanate piezoelectric films capable of withstanding high electric fields we previously demonstrated single cycle energy conversion densities of 4.28 J/cm3. While material improvement is ongoing, an equally challenging task involves developing the thermal and thermodynamic process though which we can harness this thermal-to-electric energy conversion capability. By coupling high speed thermal transients from pulsed heating with rapid charge and discharge cycles, there is potential for achieving high energy conversion efficiency. We briefly present thermodynamic equivalent models for pyroelectric power generation based on the traditional Brayton and Ericsson cycles, where temperature-pressure states in a working fluid are replaced by temperature-field states in a solid pyroelectric material. Net electrical work is then determined by integrating the path taken along the temperature dependent polarization curves for the material. From the thermodynamic cycles we identify the necessary cyclical thermal conditions to realize net power generation, including a figure of merit, rEC, or the electrocaloric ratio, to aid in guiding generator design. Additionally, lumped transient analytical heat transfer models of the pyroelectric system with pulsed thermal input have been developed to evaluate the impact of reservoir temperatures, cycle frequency, and heating power on cycle output. These models are used to compare the two thermodynamic cycles. This comparison shows that as with traditional thermal cycles the Ericsson cycle provides the potential for higher cycle work while the Brayton cycle can produce a higher output power at higher thermal efficiency. Additionally, limitations to implementation of a high-speed Ericsson cycle were identified, primarily tied to conflicts between the available temperature margin and the requirement for isothermal electrical charging and discharging.


Author(s):  
Shuguang Yao ◽  
Zhixiang Li ◽  
Wen Ma ◽  
Ping Xu ◽  
Quanwei Che

Coupler rubber buffers are widely used in high-speed trains, to dissipate the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are pre-compressed and then installed into the frame body. This paper specifically focuses on the energy absorption characteristics of the rubber buffers. Firstly, quasi-static compression tests were carried out for one and three pairs of rubber sheets, and the relationship between the energy absorption responses, i.e. Eabn  =  n ×  Eab1, Edissn =  n ×  Ediss1, and Ean =  Ea1, was obtained. Next, a series of quasi-static tests were performed for one pair of rubber sheet to investigate the energy absorption performance with different compression ratios of the rubber buffers. Then, impact tests with five impact velocities were conducted, and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The results of the impact tests showed that with the increase of the impact velocity, the Eab, Ediss, and Ea of the rear buffer increased significantly, but the three responses of the front buffer did not increase much. Finally, the results of the impact tests and quasi-static tests were contrastively analyzed, which showed that with the increase of the stroke, the values of Eab, Ediss, and Ea increased. However, the increasing rates of the impact tests were higher than that of the quasi-static tests. The maximum value of Ea was 68.76% in the impact tests, which was relatively a high value for the vehicle coupler buffer. The energy capacity of the rear buffer for dynamic loading was determined as 22.98 kJ.


2020 ◽  
pp. 0021955X2096521
Author(s):  
Somen K Bhudolia ◽  
Goram Gohel ◽  
Kah Fai Leong

Expanded Polystyrene (EPS) is a common material used to manufacture the inner foam liner of a bicycle helmet due to its outstanding energy absorption characteristics and light-weight property. The current research presents a novel corrugated expanded polystyrene (EPS) foam design concept which is used to enhance the impact dissipation of bicycle helmets from the safety standpoint to reduce head injuries and make them lighter. The baseline comparison study under impact for different foam configurations is compared with a conventional EPS foam sample without corrugation. Corrugated foam designs under current investigation are 12.5–20% lighter and provide up to 10% higher energy absorption. The details of the novel manufacturing concept, CPSC 1203 helmet impact tests, high-speed camera study to understand the differences in the failure mechanisms are deliberated in this paper.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Feng Jiang ◽  
Weilin Xu ◽  
Jun Deng ◽  
Wangru Wei

In hydraulic engineering, intense free surface breakups have been observed to develop in high-speed open channel flows, resulting in a mixed air-water layer near the free surface that grows with the development of self-aeration. This region is characterized by a substantial number of droplets coexisting with an induced air layer above. Little information about this droplet layer is currently available and no practicable approach has been proposed for predicting the parameters of the induced air layer based on the related flow structures in the droplet layer. In this research, laboratory experiments were accordingly conducted to observe the detailed droplet layer development in terms of layer thickness, droplet size, and frequency distributions under comparative flow conditions. Based on the simplified droplet layer roughness determined using the experimentally measured mean droplet size, the classical power-law of boundary layer theory was applied to provide an analytical solution for the air velocity profile inside the air layer. The relationship of air layer growth to droplet layer thickness, which is a key factor when determining the air velocity distribution, was also established, and the analytical results were proven to be in reasonable agreement with air velocity profiles presented in the literature. By determining the relationship between droplet layer properties and air velocity profiles, the study establishes a basis for the improved modeling of high-speed open channel flows.


Author(s):  
Angus Gray-Stephens ◽  
Tahsin Tezdogan ◽  
Sandy Day

Abstract Numerical Ventilation (NV) is a well-known problem that occurs when the Volume of Fluid method is used to model vessels with a bow that creates a small, acute entrance angle with the free surface. These are typical of both planing hulls and yachts. There is a general lack of discussion focusing upon Numerical Ventilation available within the public domain, which is attributable to the fact that it only affects such a niche area of naval architecture. The information available is difficult to find, often fleetingly mentioned in papers with a different focus. Numerical Ventilation may be considered one of the main sources of error in numerical simulations of planing hulls and as such warrants an in-depth analysis. This paper sets out to bring together the available work, as well as performing its own investigation into the problem to develop a better understanding of Numerical Ventilation and present alternate solutions. Additionally, the success and impact of different approaches is presented in an attempt to help other researchers avoid and correct for Numerical Ventilation. Interface smearing caused by the simulations inability to track the free surface is identified as the main source of Numerical Ventilation. This originates from the interface between the volume mesh and the prism layer mesh. This study looks into the interface to identify strategies that minimise Numerical Ventilation, presenting a novel solution to prism layer meshing that was found to have a positive impact. Through the implementation of a modified High Resolution Interface Capture (HRIC) scheme and the correct mesh refinements, it is possible to minimise the impact of Numerical Ventilation to a level that will not affect the results of a simulation and is acceptable for engineering applications.


2020 ◽  
Vol 87 (12) ◽  
Author(s):  
Pengbo Su ◽  
Bin Han ◽  
Mao Yang ◽  
Zhongnan Zhao ◽  
Feihao Li ◽  
...  

Abstract The energy adsorption properties of all-metallic corrugated sandwich cylindrical shells (CSCSs) subjected to axial compression loading were investigated by the method combining experiments, finite element (FE) simulations, and theoretical analysis. CSCS specimens manufactured using two different methods, i.e., high-speed wire-cut electric discharge machining (HSWEDM) and extrusion, were tested under axial compression. While specimens fabricated separately by HSWEDM and extrusion both exhibited a stable crushing behavior, the extruded ones were much more applicable as lightweight energy absorbers because of their good energy absorption capacity, repeatability, and low cost. The numerically simulated force–displacement curve and the corresponding deformation morphologies of the CSCS compared well with those obtained from experiments. The specific folding deformation mode was revealed from both experiments and simulations. Subsequently, based upon the mode of folding deformation, a theoretical model was established to predict the mean crushing force of the CSCS construction. It was demonstrated that CSCSs with more corrugated units, smaller value of tc/tf and W/Ro could dissipate more impact energy. Such sandwich cylindrical shells exhibited better energy absorption than monolithic cylindrical shells, with an increase of at least 30%. Ultimately, the dynamic effect under the impact load was further evaluated. The dynamic amplification coefficient of CSCS decreased with the increase of the wall thickness.


Author(s):  
Mehran Tehrani ◽  
Ayoub Y. Boroujeni ◽  
Ramez Hajj ◽  
Marwan Al-Haik

Carbon fiber reinforced polymer composites (CFRPs) are renowned for their superior in-plane mechanical properties. However, they lack sufficient out-of-plane performance. Integrating carbon nanotubes (CNTs) into structures of CFRPs can enhance their poor out-of-plane properties. The present work investigates the effect of adding CNTs, grown on carbon fibers via a relatively low temperature growth technique, on the on and off-axis tensile properties as well as on transverse high velocity impact (∼100 m.s−1) energy absorption of the corresponding CFRPs. Two sets of composite samples based on carbon fabrics with surface grown CNTs and reference fabrics were fabricated and mechanically characterized via tension and impact tests. The on-axis and off-axis tests confirmed improvements in the strength and stiffness of the hybrid samples over the reference ones. A gas gun equipped with a high-speed camera was utilized to evaluate the impact energy absorption of the composite systems subjected to transverse spherical projectiles. Due to the integration of CNTs, intermediate improvements in the tensile properties of the CFRP were achieved. However, the CFRPs’ impact energy absorption was improved significantly.


Author(s):  
Angus Gray-Stephens ◽  
Tahsin Tezdogan ◽  
Sandy Day

Abstract Numerical Ventilation (NV) is a well-known problem that occurs when the Volume of Fluid method is used to model vessels with a bow that creates an acute entrance angle with the free surface, as is typical for both planing hulls and yachts. Numerical Ventilation may be considered one of the main sources of error in numerical simulations of planing hulls and as such warrants an in-depth analysis. This paper sets out to bring together the available work, as well as performing its own investigation into the problem to develop a better understanding of Numerical Ventilation and present alternate solutions. Additionally, the success and impact of different approaches is presented in an attempt to help other researchers avoid and correct for Numerical Ventilation. Interface smearing caused by the simulation being unable to track the free surface is identified as the main source of Numerical Ventilation. This originates from the interface between the volume mesh and the prism layer mesh. This study investigates this interface, presenting a novel solution to prism layer meshing that was found to minimize Numerical Ventilation. Through the implementation of a modified High Resolution Interface Capture (HRIC) scheme and the correct mesh refinements, it is possible to minimize the impact of Numerical Ventilation to a level that will not affect the results of a simulation and is acceptable for engineering applications.


Author(s):  
S. Jenson ◽  
M. Ali ◽  
K. Alam ◽  
J. Hoffman

The work presented here is a continuation of the study performed in exploring the energy absorption characteristics of non-Newtonian fluid-filled regular hexagonal aluminum honeycomb structures. In the previous study, energy absorbing properties were investigated by using an air powered pneumatic ram, dynamic load cell, and a high speed camera. This study was conducted using a pneumatic ram which was designed to exploit only its kinetic energy during the impact. Experimental samples included an empty honeycomb sample and a filled sample as the filled samples showed the largest difference in energy absorption with respect to the empty samples in the previous study. Therefore, the filled samples were further investigated in this study by measuring the impact forces at the distal end as well as the damage on the impact end. Upon impact, the filled samples were able to reduce the damage area on impact end and were able to lower average and peak forces by 71.9% and 77.4% at the distal end as compared to the empty sample.


Sign in / Sign up

Export Citation Format

Share Document