Horizontal and Torsional Modes of an Ultra Large Container Ship (ULCS)

Author(s):  
P. P. Vijith ◽  
Suresh Rajendran

Abstract The hydro elastic responses of flexible structures under fluid loading is an important concern during the design of large ocean structures. The two-way coupling between the structural responses and the hydrodynamic loads is a complex problem in large flexible floating structures since the structures can vibrate in longitudinal, vertical, horizontal, or torsional modes. The antisymmetric distortion modes may be coupled depending on the location of the centroid and the shear centre. In the case of thin walled open structures, horizontal and torsional vibrations are usually coupled due to the asymmetry of cross section as well as eccentricity between centroid of the section and shear deformation centres. The acurate estimation of dry natural frequency and modes shapes of structure is indispensable since it helps to validate the accuracy of the structural modelling. A numerical method available from one of the existing literatures is used for the estimation of dry and wet natural frequencies, and mode shapes of horizontal and torsional vibrations of an ULCS. The natural frequency and modes are essential parameters for the analysis of interaction between structural responses and hydrodynamic loads. The numerical method is based on a 1D FEM beam model. Distortion due to warping is included in the numerical model since it is well known that containerships with large hatch opening are susceptible to warping. The numerical model is subdivided into 50 stations and the mass distribution and the sectional properties are calculated in order to match the bending, shear, torsion and warping moduli of the experimental model. The dry and wet natural frequency and mode shapes for the horizontal and torsional vibrations of the ULCS is numerically calculated and compared with the experimental results.

Author(s):  
Gen Fu ◽  
Alexandrina Untaroiu ◽  
Walter O’Brien

The measurement of the aeromechanical response of the fan blades is important to quantifying their integrity. The accurate knowledge of the response at critical locations of the structure is crucial when assessing the structural condition. A reliable and low cost measuring technique is necessary. Currently, sensors can only provide the measured data at several discrete points. A significant number of sensors may be required to fully characterize the aeromechanical response of the blades. However, the amount of instrumentation that can be placed on the structure is limited due to data acquisition system limitations, instrumentation accessibility, and the effect of the instrumentation on the measured response. From a practical stand point, it is not possible to place sensors at all the critical locations for different excitations. Therefore, development of an approach that derives the full strain field response based on a limited set of measured data is required. In this study, the traditional model reduction method is used to expand the full strain field response of the structure by using a set of discrete measured data. Two computational models are developed and used to verify the expansion approach. The solution of the numerical model is chosen as the reference solution. In addition, the numerical model also provides the mode shapes of the structure. In the expansion approach, this information is used to develop the algorithm. First, a cantilever beam model is created. The influences of the sensor location, number of sensors and the number of modes included are analyzed using this cantilever beam model. The expanded full field response data is compared with the reference solution to evaluate the expansion procedure. The rotor 67 blade model is then used to test the expansion method. The results show that the expanded full field data is in good agreement with the calculated data. The expansion algorithm can be used for the full field strain by using the limited sets of strain data.


Author(s):  
Can Gonenli ◽  
Hasan Ozturk ◽  
Oguzhan Das

In this study, the effect of crack on free vibration of a large deflected cantilever plate, which forms the case of a pre-stressed curved plate, is investigated. A distributed load is applied at the free edge of a thin cantilever plate. Then, the loading edge of the deflected plate is fixed to obtain a pre-stressed curved plate. The large deflection equation provides the non - linear deflection curve of the large deflected flexible plate. The thin curved plate is modeled by using the finite element method with a four-node quadrilateral element. Three different aspect ratios are used to examine the effect of crack. The effect of crack and its location on the natural frequency parameter is given in tables and graphs. Also, the natural frequency parameters of the present model are compared with the finite element software results to verify the reliability and validity of the present model. This study shows that the different mode shapes are occurred due to the change of load parameter, and these different mode shapes cause a change in the effect of crack.


2020 ◽  
Vol 27 (1) ◽  
pp. 216-225
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

AbstractRecently, basalt fiber reinforced polymer (BFRP) is acknowledged as an outstanding material for the strengthening of existing concrete structure, especially it was being used in marine vehicles, aerospace, automotive and nuclear engineering. Most of the structures were subjected to severe dynamic loading during their service life that may induce vibration of the structures. However, free vibration studied on the basalt laminates composite plates with elliptical cut-out and correlation of natural frequency with buckling load has been very limited. Therefore, effects of the elliptical hole on the natural frequency of basalt/epoxy composite plates was performed in this study. Effects of stacking sequence (θ), elliptical hole inclination (ϕ), hole geometric ratio (a/b) and position of the elliptical hole were considered. The numerical modeling of free vibration analysis was based on the mechanical properties of BFRP obtained from the experiment. The natural frequencies as well as mode shapes of basalt laminates composite plates were numerically determined using the commercial program software (ABAQUS). Then, the determination of correlation of natural frequencies with buckling load was carried out. Results showed that elliptical hole inclination and fiber orientation angle induced the inverse proportion between natural frequency and buckling load.


2021 ◽  
pp. 096739112110033
Author(s):  
TG Sreekanth ◽  
M Senthilkumar ◽  
S Manikanta Reddy

Delamination is definitely an important topic in the area of composite structures as it progressively worsens the mechanical performance of fiber-reinforced polymer composite structures in its service period. The detection and severity analysis of delaminations in engineering areas like the aviation industry is vital for safety and economic considerations. The existence of delaminations varies the vibration characteristics such as natural frequencies, mode shapes, etc. of composites and hence this indication can be effectively used for locating and quantifying the delaminations. The changes in vibration characteristics are considered as inputs for the inverse problem to determine the location and size of delaminations. In this paper Artificial Neural Network (ANN) is used for delamination evaluationof glass fiber-reinforced composite beams using natural frequency as typical vibration parameter. The Finite Element Analysis is used for generating the required dataset for ANN. The frequency-based delamination prediction technique is validated by finite element models and experimental modal analysis. The results indicate that the ANN-based back propagation algorithm can predict the location and size of delaminations in composites with good accuracy for numerical natural frequency data but the accuracy is comparitivelyless for experimental natural frequency data.


2011 ◽  
Vol 675-677 ◽  
pp. 477-480
Author(s):  
Dong Wei Shu

In this work analytical solutions are developed to study the free vibration of composite beams under axial loading. The beam with a single delamination is modeled as four interconnected Euler-Bernoulli beams using the delamination as their boundary. The continuity and the equilibrium conditions are satisfied between the adjoining beams. The studies show that the sizes and the locations of the delaminations significantly influence the natural frequencies and mode shapes of the beam. A monotonic relation between the natural frequency and the axial load is predicted.


Author(s):  
Mohammad-Reza Ashory ◽  
Farhad Talebi ◽  
Heydar R Ghadikolaei ◽  
Morad Karimpour

This study investigated the vibrational behaviour of a rotating two-blade propeller at different rotational speeds by using self-tracking laser Doppler vibrometry. Given that a self-tracking method necessitates the accurate adjustment of test setups to reduce measurement errors, a test table with sufficient rigidity was designed and built to enable the adjustment and repair of test components. The results of the self-tracking test on the rotating propeller indicated an increase in natural frequency and a decrease in the amplitude of normalized mode shapes as rotational speed increases. To assess the test results, a numerical model created in ABAQUS was used. The model parameters were tuned in such a way that the natural frequency and associated mode shapes were in good agreement with those derived using a hammer test on a stationary propeller. The mode shapes obtained from the hammer test and the numerical (ABAQUS) modelling were compared using the modal assurance criterion. The examination indicated a strong resemblance between the hammer test results and the numerical findings. Hence, the model can be employed to determine the other mechanical properties of two-blade propellers in test scenarios.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750023 ◽  
Author(s):  
Xia-Chun Chen ◽  
Zhen-Hu Li ◽  
Francis T. K. Au ◽  
Rui-Juan Jiang

Prestressed concrete bridges with corrugated steel webs have emerged as a new form of steel-concrete composite bridges with remarkable advantages compared with the traditional ones. However, the assumption that plane sections remain plane may no longer be valid for such bridges due to the different behavior of the constituents. The sandwich beam theory is extended to predict the flexural vibration behavior of this type of bridges considering the presence of diaphragms, external prestressing tendons and interaction between the web shear deformation and flange local bending. To this end, a [Formula: see text] beam finite element is formulated. The proposed theory and finite element model are verified both numerically and experimentally. A comparison between the analyses based on the sandwich beam model and on the classical Euler–Bernoulli and Timoshenko models reveals the following findings. First of all, the extended sandwich beam model is applicable to the flexural vibration analysis of the bridges considered. By letting [Formula: see text] denote the square root of the ratio of equivalent shear rigidity to the flange local flexural rigidity, and L the span length, the combined parameter [Formula: see text] appears to be more suitable for considering the diaphragm effect and the interaction between the shear deformation and flange local bending. The diaphragms have significant effect on the flexural natural frequencies and mode shapes only when the [Formula: see text] value of the bridge falls below a certain limit. For a bridge with an [Formula: see text] value over a certain limit, the flexural natural frequencies and mode shapes obtained from the sandwich beam model and the classical Euler–Bernoulli and Timoshenko models tend to be the same. In such cases, either of the classical beam theories may be used.


1999 ◽  
Author(s):  
S. A. Lipsey ◽  
Y. W. Kwon

Abstract Damage reduces the flexural stiffness of a structure, thereby altering its dynamic response, specifically the natural frequency, damping values, and the mode shapes associated with each natural frequency. Considerable effort has been put into obtaining a correlation between the changes in these parameters and the location and amount of the damage in beam structures. Most numerical research employed elements with reduced beam dimensions or material properties such as modulus of elasticity to simulate damage in the beam. This approach to damage simulation neglects the non-linear effect that a crack has on the different modes of vibration and their corresponding natural frequencies. In this paper, finite element modeling techniques are utilized to directly represent an embedded crack. The results of the dynamic analysis are then compared to the results of the dynamic analysis of the reduced modulus finite element model. Different modal parameters including both mode shape displacement and mode shape curvature are investigated to determine the most sensitive indicator of damage and its location.


2021 ◽  
pp. 107754632110377
Author(s):  
Fengxia He ◽  
Zhong Luo ◽  
Lei Li ◽  
Xiaoxia Zhang

Similitude laws can be used to extrapolate the vibration characteristic of a small, inexpensive, and easily tested model into structural behavior for the full-size prototype. In this article, a systematic similitude approach is proposed to predict the natural frequency, mode shape, and vibration response of composite laminated plates. The emphasis of this article is to predict the vibration characteristic of composite laminated plates in an effective and convenient way. Sensitivity analysis (SA) is introduced to improve the prediction accuracy of natural frequency. For distortion similarity, the prediction accuracy is improved close to 5%. Modal assurance criterion (MAC) measures the consistency of mode shapes of the full-size prototype and scaled models. The influence of stacking sequence on mode consistency is investigated. Similitude based on virtual mode and statistical energy (SVMSE) is proposed to extrapolate the transient response of the prototype to simulate the shock environment, such as satellite–rocket separation, etc. In conclusion, the prediction accuracy of natural frequency, mode consistency, and response coincidence are considered comprehensively to extrapolate the vibration characteristic of the full-size laminated plates.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Nizar Faisal Alkayem ◽  
Maosen Cao ◽  
Minvydas Ragulskis

Structural damage detection is a well-known engineering inverse problem in which the extracting of damage information from the dynamic responses of the structure is considered a complex problem. Within that area, the damage tracking in 3D structures is evaluated as a more complex and difficult task. Swarm intelligence and evolutionary algorithms (EAs) can be well adapted for solving the problem. For this purpose, a hybrid elitist-guided search combining a multiobjective particle swarm optimization (MOPSO), Lévy flights (LFs), and the technique for the order of preference by similarity to ideal solution (TOPSIS) is evolved in this work. Modal characteristics are employed to develop the objective function by considering two subobjectives, namely, modal strain energy (MSTE) and mode shape (MS) subobjectives. The proposed framework is tested using a well-known benchmark model. The overall strong performance of the suggested method is maintained even under noisy conditions and in the case of incomplete mode shapes.


Sign in / Sign up

Export Citation Format

Share Document