Fatigue Test Plan to Obtain S-N Curves

Author(s):  
Joa˜o Ma´rio Andrade Pinto ◽  
Enrico A. Colosimo ◽  
Tanius Rodrigues Mansur ◽  
Julio Ricardo Barreto Cruz ◽  
Ernani Sales Palma ◽  
...  

S-N curves of structural materials are obtained through fatigue tests. These tests are often performed using five different stress levels, with fifteen test specimens for each stress level. This kind of test plan provides estimates that are less precise compared to other experimental plans, for example, the ones called optimum plan or compromise plan. The main reason for this drawback is the use of the same number of specimens for all stress levels. It has been observed that less precise results are obtained for lower stress levels because failure occurs less frequently. That is why more specimens should be used for lower stress levels as compared to higher stress levels. As long as the number of specimens to be tested at low stress levels is increased, the total number of failures will also increase, which allows one to develop a more precise data analysis. The objective of this work is to present an alternative experimental plan to obtain S-N curves, which intends to provide accurate estimators. A practical application is done for planning a fatigue test, in a flex-rotating machine, to obtain the S-N curve of SAE 8620 steel.

2018 ◽  
Vol 188 ◽  
pp. 02011
Author(s):  
Ş. Hakan Atapek ◽  
Spiros G. Pantelakis ◽  
Apostolos N. Chamos ◽  
Gülşah Aktaş Çelik

The precipitation hardenable and non-toxic Cu-Ni-Si alloys are good alternatives to Cu-Be and Cu-Co-Ni-Be alloys due to their high strength and high conductivity that can be attained by not only alloying but also thermo-mechanical routes. In this study, the fractographic analysis was carried out to understand the fatigue failure of aged 2.55Ni-0.55Si-0.25Zr-0.25Cr (wt-%) alloy which is a member of Corson family. In fatigue tests, a constant amplitude loading was applied at a stress ratio (R = σmin/σmax) of -1 and different stress levels (400, 350, 200 and 175 MPa) were used. The fracture response of the alloy was discussed depending on the applied stress levels and microstructural features. It was concluded that (i) Ni,Zr-rich precipitates and Cr-rich precipitates at the grain boundaries caused crack nucleation at all stress levels and (ii) the interaction between Ni-rich silicides and dislocations at lower stress level resulted in localized shearing and fine striations.


2014 ◽  
Vol 2014 (6) ◽  
pp. 88-94 ◽  
Author(s):  
Józef Brzęczek ◽  
Henryk Gruszecki ◽  
Leszek Pieróg ◽  
Janusz Pietruszka

Abstract Service life of the PZL M28 is computed based on the results of the full-scale fatigue tests of the structure [1]. As the PZL M28 is a commuter category airplane according to the 14 CFR Part 23 and CS-23 regulations, the test objects were: (1) wing and wing load carry-through structure, (2) empennage and attached fuselage structure. Additionally, there were fatigue tests carried out for the landing gear and other selected elements including control system elements. The aircraft load carry-through structure is metallic and the cabin is unpressurized. The fatigue tests were conducted stage-by-stage. As tests progressed, it was possible to extend the aircraft target service life, applying the safe-life philosophy with reference to the primary components of the load carry-through structure. The article brings into attention selected issues related to the fatigue tests plan preparation, with focus on wing and wing load carry-through structure test.


Author(s):  
Xiaobin Le

Abstract One typical widely-accepted approach for describing the fatigue test data is the P-S-N curve approach. However, the P-S-N curve approach has some issues such as: (1) If there are only a few fatigue test data at a fatigue test stress level, the P-S-N curve approach is not valid due to the small sample size; (2) When the total number of fatigue tests under different stress levels might be larger such as more than 30 even though the number of fatigue tests at the same stress level is small, the P-S-N curve cannot be used to analyze such set of fatigue data; (3) It is difficult to calculate the reliability of a component under a cyclic stress level when the probabilistic distribution function under this stress level is not available in the P-S-N curves. The author has proposed the K-D probabilistic fatigue damage model (K-D model) to overcome those issues. The 6061-T6 10-gauge sheet-type flat fatigue specimen was designed, manufactured, and tested on the Instron 8081 fatigue test machine to verify this K-D model. The fatigue tests were under five different cyclic axial loadings with a total of 195 tests. In this paper, the fatigue test data will be analyzed by the P-S-N curve approach and the K-D model. The systematic comparisons between the P-S-N curve approach and the K-D model have approved and verified that the K-D model can be used to analyze and to describe the fatigue test data under all different fatigue stress levels and can be used to calculate the reliability of a component under any type of cyclic fatigue loading.


2020 ◽  
Vol 11 (6) ◽  
pp. 861-873
Author(s):  
Ş. Hakan Atapek ◽  
Spiros Pantelakis ◽  
Şeyda Polat ◽  
Apostolos Chamos ◽  
Gülşah Aktaş Çelik

Purpose The purpose of this paper is to investigate the fatigue behavior of precipitation-strengthened Cu‒2.55Ni‒0.55Si alloy, modified by the addition of 0.25 Cr and 0.25 Zr (wt%), using mechanical and fractographical studies to reveal the effect of microstructural features on the fracture. Design/methodology/approach For strengthening, cast and hot forged alloy was subjected to solution annealing at 900°C for 60 min, followed by quenching in water and then aging at 490°C for 180 min. Precipitation-hardened alloy was exposed to fatigue tests at R=−1 and different stress levels. All fracture surfaces were examined within the frame of fractographical analysis. Findings Fine Ni-rich silicides responsible for the precipitation strengthening were observed within the matrix and their interactions with the dislocations at lower stress level resulted in localized shearing and fine striations. Although, by the addition of Cr and Zr, the matrix consisted of hard Ni, Zr-rich and Cr-rich silicides, these precipitates adversely affected the fatigue behavior acting as nucleation sites for cracks. Originality/value These findings contribute to the present knowledge by revealing the effect of microstructural features on the mechanical behavior of precipitation-hardened Cu‒Ni‒Si alloy modified by Cr and Zr addition.


2016 ◽  
Vol 62 (1) ◽  
pp. 83-98 ◽  
Author(s):  
A. Szydło ◽  
K. Malicki

Abstract The bonding state of the asphalt layers in a road pavement structure significantly affects its fatigue life. These bondings, therefore, require detailed tests and optimization. In this paper, the analyses of the correlation between the results of laboratory static tests and the results of fatigue tests of asphalt mixture interlayer bondings were performed. The existence of the relationships between selected parameters was confirmed. In the future, the results of these analyses may allow for assessment of interlayer bondings’ fatigue life based on the results of quick and relatively easy static tests.


Author(s):  
LOON-CHING TANG

We present two alternative perspectives to the current way of planning for constant-stress accelerated life tests (CSALTs) and step-stress ALT (SSALT). In 3-stress CSALT, we consider test plans that not only optimize the stress levels but also optimize the sample allocation. The resulting allocations also limit the chances of inconsistency when data are plotted on a probability plot. For SSALT, we consider test plans that not only optimize both stress levels and holding times, but also achieve a target acceleration factor that meets the test time constraint with the desirable fraction of failure. The results for both problems suggest that the statistically optimal way to increase acceleration factor in an ALT is to increase lower stress levels and; in the case of CSALT, to decrease their initial sample allocations; in the case of SSALT, to reduce their initial hold times. Both problems are formulated as constrained nonlinear programs.


2015 ◽  
Vol 1096 ◽  
pp. 562-566 ◽  
Author(s):  
Bo Yu ◽  
Tao Hong ◽  
Jian Zhang ◽  
Qing Yu Liang

Due to the superior structure style, orthotropic steel bridge deck has been getting more and more widely practical application. The static and fatigue tests of the orthotropic steel bridge deck models were carried out in this research paper, which presented the fatigue damage developing laws, compared the test results with homogeneous test results in existing documents, and according to the relative fatigue accumulative damage theory, the fatigue accumulative damage equations of the sectional specimen and the whole specimen are respectively studied.


Author(s):  
Torbjo̸rn Lindemark ◽  
Inge Lotsberg ◽  
Joong-Kyoo Kang ◽  
Kwang-Seok Kim ◽  
Narve Oma

Daewoo Shipbuilding & Marine Engineering Co., Ltd. (DSME), StatoilHydro and DNV established a common project to investigate the reason for the difference between calculated fatigue lives and the in-service experience and to assess the fatigue capacity of stiffener web connections subjected mainly to web frame shear stresses. The main objective of the work was to establish fatigue test data and perform numerical analysis of collar plate connections in order to provide improved confidence in analysis methodology for fatigue life assessment. Large scale fatigue tests of different types of connections were carried out to obtain fatigue test data of collar plate connections. Finite element analyses were carried out for comparison with fatigue test data and with measured stresses on the test model. Based on this work recommendations on fatigue design analysis of connections between stiffeners and web frames have been derived. The background for this is presented in this paper.


2010 ◽  
Vol 638-642 ◽  
pp. 455-460 ◽  
Author(s):  
A. Rutecka ◽  
L. Dietrich ◽  
Zbigniew L. Kowalewski

The AlSi8Cu3 and AlSi7MgCu0.5 cast aluminium alloys of different composition and heat treatment were investigated to verify their applicability as cylinder heads in the car engines [1]. Creep tests under the step-increased stresses at different temperatures, and low cycle fatigue (LCF) tests for a range of strain amplitudes and temperatures were carried out. The results exhibit a significant influence of the heat treatment on the mechanical properties of the AlSi8Cu3 and AlSi7MgCu0.5. An interesting fact is that the properties strongly depend on the type of quenching. Lower creep resistance (higher strain rates) and lower stress response during fatigue tests were observed for the air quenched materials in comparison to those in the water quenched. Cyclic hardening/softening were also observed during the LCF tests due to the heat treatment applied. The mechanical properties determined during the tests can be used to identify new constitutive equations and to verify existing numerical models.


Mechanik ◽  
2018 ◽  
Vol 91 (3) ◽  
pp. 230-232
Author(s):  
Leszek Bielenda ◽  
Wojciech Obrocki ◽  
Maciej Masłyk ◽  
Jan Sieniawski

Results of comparison research of various sensors types used in the fatigue tests for aircraft engine compressor blade vibration amplitude measurement were analysed. Sensors under tests: inductive, capacitive, eddy-current, laser and vibration. Presented were sensors characteristics and their faults. Additional test stand instrumentation was designed and performed, including mounting bracket.


Sign in / Sign up

Export Citation Format

Share Document