Clamp Load Decay in Preloaded Dissimilar Lightweight-Material Joints due to Cyclic Temperature

Author(s):  
Sayed A. Nassar ◽  
Amir Kazemi ◽  
Mohamad Dyab

Experimental and Finite Element methods are used for investigating the effect of cyclic thermal loading on the clamp load decay in preloaded single-lap bolted joints that are made of dissimilar-materials. Joint material combinations include steel and lightweight materials such as aluminum and magnesium alloys, with various different thicknesses. The range of cyclic temperature profile varies between −20°C and +150°C. A computer-controlled environmental chamber is used for generating the desired cyclic temperature profile and duration. Real time clamp load data is collected using high-temperature load cells. Percent clamp load decay is investigated for various combinations of joint materials, initial preload level, and test specimen thicknesses. Thermal and material creep finite element analysis is performed using temperature-dependent mechanical properties. FEA result has provided insight into interesting experimental observations regarding model predictions and the experimental data is discussed.

Author(s):  
Sayed A. Nassar ◽  
Amir Kazemi

Experimental and finite element techniques are used for investigating the effect of cyclic thermal loading on the clamp load decay in preloaded single-lap bolted joints that are made of multimaterial lightweight alloys. Substrate material combinations include aluminum, magnesium, and steel, with various coupon thicknesses. The range of cyclic temperature profile varies between −20 °C and +150 °C in a computer-controlled environmental chamber for generating the desired cyclic temperature profile and durations. Real time clamp load data are recorded using strain gage-based, high-temperature, load cells. Clamp load decay is investigated for various combinations of joint materials, initial preload level, and substrate thickness. Thermal and material creep finite element analysis (FEA) is performed using temperature-dependent mechanical properties. The FEA model and results provided a valuable insight into the experimental results regarding the vulnerability of some lightweight materials to significant material creep at higher temperatures.


1999 ◽  
Author(s):  
Partha S. Das

Abstract Harbor Branch Oceanographic Institution (HBOI) designed, built and has operated two JOHNSON-SEA-LINK (JSL) manned submersibles for the past 25 years. The JSL submersibles each incorporate a 66–68 in. (1.6764–1.7272 m) OD, 4–5.25 in. (0.1016–0.13335 m) thick acrylic two-man sphere as a Pressure Vessel for Human Occupancy (PVHO). This type of spherical acrylic sphere or submersible was first introduced in around 1970 and is known as Naval Experimental Manned Observatory (NEMO) submersibles. As the demand increases for ocean exploration to 3000 ft. (914.4 m) depth to collect samples, to study the ocean surfaces, the problem of developing cracks at the interface of these manned acrylic submersibles following few hundred dives have become a common phenomena. This has drawn considerable attentions for reinvestigation of the spherical acrylic submersible in order to overcome this crack generation problem at the interface. Therefore, a new full-scale 3-D nonlinear FEA (Finite Element Analysis) model, similar to the spherical acrylic submersible that HBOI uses for ocean exploration, has been developed for the first time in order to simulate the structural behavior at the interface and throughout the sphere, for better understanding of the mechanical behavior. Variation of the stiffness between dissimilar materials at the interface, lower nylon gasket thickness, over designed aluminum hatch are seemed to be few of the causes for higher stresses within acrylic sphere at the nylon gasket/acrylic interface. Following the basic understanding of the stresses and relative displacements at the interface and within different parts of the submersible, various models have been developed on the basis of different shapes and thickness of nylon gaskets, openings of the acrylic sphere, hatch geometry and its materials, specifically to study their effect on the overall performance of the acrylic submersible. Finally, the new model for acrylic submersible has been developed by redesigning the top aluminum hatch and hatch ring, the sphere openings at both top and bottom, as well as the nylon gasket inserts. Altogether this new design indicates a significant improvement over the existing spherical acrylic submersible by reducing the stresses at the top gasket/acrylic interface considerably. Redesigning of the bottom penetrator plate, at present, is underway. In this paper, results from numerical modeling only are reported in details. Correlation between experimental-numerical modeling results for the new model will be reported in the near future.


1999 ◽  
Vol 122 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Manjula N. Variyam ◽  
Weidong Xie ◽  
Suresh K. Sitaraman

Components in electronic packaging structures are of different dimensions and are made of dissimilar materials that typically have time, temperature, and direction-dependent thermo-mechanical properties. Due to the complexity in geometry, material behavior, and thermal loading patterns, finite-element analysis (FEA) is often used to study the thermo-mechanical behavior of electronic packaging structures. For computational reasons, researchers often use two-dimensional (2D) models instead of three-dimensional (3D) models. Although 2D models are computationally efficient, they could provide misleading results, particularly under thermal loading. The focus of this paper is to compare the results from various 2D, 3D, and generalized plane-deformation strip models and recommend a suitable modeling procedure. Particular emphasis is placed to understand how the third-direction coefficient of thermal expansion (CTE) influences the warpage and the stress results predicted by 2D models under thermal loading. It is seen that the generalized plane-deformation strip models are the best compromise between the 2D and 3D models. Suitable analytical formulations have also been developed to corroborate the findings from the study. [S1043-7398(00)01402-X]


Author(s):  
Michael Sciascia

For complex finite element problems it is often desirable to prescribe boundary conditions that are difficult to quantify. The analysis of a pressure vessel undergoing postweld heat treatment (PWHT) is an example of such a problem. The PWHT process is governed by Code rules, but the temperature and gradient requirements they impose are not sufficient to precisely describe the complete vessel temperature profile. The imposition of such a profile in the analysis results in uncertainty and errors. A suitable but difficult approach is to specify heater power instead of temperatures, letting the solver determine the temperature profile. Unfortunately, the individual heater power levels necessary to meet the Code requirements are usually not known in advance. Determining the power levels necessary is particularly difficult if a transient solution is required. A means of actively controlling the heaters during the FEA solution is requirement for this approach. A simple and adaptive control algorithm was incorporated into the FEA solver via its scripting capability. Heat flux boundary conditions (heater power) were applied instead of transient temperature boundary conditions. Heater power levels were optimized to achieve predetermined time/temperature goals as the solution proceeded. The algorithm described was successfully applied to a pressure vessel PWHT with 14 zones of control. The approach may be adapted to other problems and boundary conditions.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Depeng Chen ◽  
Qilin Zhu ◽  
Zhifang Zong ◽  
Tengfei Xiang ◽  
Chunlin Liu

A crack caused by shrinkage could remarkably increase the permeability, heavily deteriorate the durability, and heavily deteriorate the service life of a concrete structure. However, different forms of thermal shrinkage can be predicted by directly applying a temperature load on a node. The prediction of moisture-induced stresses in cement-based materials by using the common finite element method (FEM) software is a big challenge. In this paper, we present a simple numerical calculation approach by using the proposed coefficient of hygroscopic expansion (CHE) to predict the moisture-induced deformation of concrete. The theoretical calculation formula of the linear CHE (LCHE) of cement-based material was deduced based on the Kelvin–Laplace equation and the Mackenzie equation. The hygroscopic deformation of cement mortar was investigated by inversion analysis; based on the results, the LCHE could be determined. Moreover, a case analysis of the application of LCHE to concrete is also conducted. The simulated results of concrete shrinkage were close to the experimental ones. As a whole, it is feasible to predict the drying shrinkage of concrete through simple calculation by using the proposed LCHE, which is also beneficial to the direct application of moisture loads on nodes in finite element analysis (FEA).


2014 ◽  
Vol 1065-1069 ◽  
pp. 1226-1229
Author(s):  
Yong Sheng Zhang ◽  
Yan Ying Li

Basing on the finite element analysis software, the emergence of crack under the effect of gradual changed temperature load and the change of stress which are in the condition of super reinforced concrete frame structure are analyzed from the linear and nonlinear numeral simulation. The simulation shows that the structure component under the normal condition is cracked and turn into the nonlinear condition and the steel bars still works under the elastic stage. Meanwhile the actual stage which is reflected by the elastic-plastic analysis of the internal force and deformation is compared by the results which are obtained by the actual project observed results and the calculation of the simplified model. So the distribution of the stress which is caused by the structure temperature reduction is greatly evaluated by the usage of the cracking model which is nonlinear finite element and also plays an important role in the engineering project and practice.


Author(s):  
Robert E. Dodde ◽  
Scott F. Miller ◽  
Albert J. Shih ◽  
James D. Geiger

Cautery is a process to coagulate tissues and seal blood vessels using the heat. In this study, finite element modeling (FEM) was performed to analyze temperature distribution in biological tissue subject to cautery electrosurgical technique. FEM can provide detailed insight into the heat transfer in biological tissue to reduce the collateral thermal damage and improve the safety of cautery surgical procedure. A coupled thermal-electric FEM module was applied with temperature-dependent electrical and thermal properties for the tissue. Tissue temperature was measured at different locations during the electrosurgical experiments and compared to FEM results with good agreement. The temperature-dependent electrical conductivity has demonstrated to be critical. In comparison, the temperature-dependent thermal conductivity does not impact heat transfer as much as the electrical conductivity. FEM results show that the thermal effects can be varied with the electrode geometry that focuses the current density at the midline of the instrument profile.


Author(s):  
Shunji Kataoka ◽  
Takuya Sato

Creep-fatigue damage is one of the dominant failure modes for pressure vessels and piping used at elevated temperatures. In the design of these components the inelastic behavior should be estimated accurately. An inelastic finite element analysis is sometimes employed to predict the creep behavior. However, this analysis needs complicated procedures and many data that depend on the material. Therefore the design is often based on a simplified inelastic analysis based on the elastic analysis result, as described in current design codes. A new, simplified method, named, Stress Redistribution Locus (SRL) method, was proposed in order to simplify the analysis procedure and obtain reasonable results. This method utilizes a unique estimation curve in a normalized stress-strain diagram which can be drawn regardless of the magnitude of thermal loading and constitutive equations of the materials. However, the mechanism of SRL has not been fully investigated. This paper presents results of the parametric inelastic finite element analyses performed in order to investigate the mechanism of SRL around a structural discontinuity, like a shell-skirt intersection, subjected to combined secondary bending stress and peak stress. This investigation showed that SRL comprises a redistribution of the peak and secondary stress components and that although these two components exhibit independent redistribution behavior, they are related to each other.


2018 ◽  
Vol 941 ◽  
pp. 1474-1478
Author(s):  
Yelm Okuyama ◽  
Masaki Tanaka ◽  
Tetsuya Ohashi ◽  
Tatsuya Morikawa

The effect of the activated slip systems on the temperature dependence of yield stress was investigated in α-Ti by using crystal plasticity finite element method. A model for finite element analysis (FEA) was constructed based on experimental results. The displacement in FEA was applied up to the nominal strain of 4% which is the same strain as the experimental one. Stress-strain curves were obtained, which corresponds to experimental data taken every 50 K between 73 K and 673 K. The used material constants which are temperature dependent were elastic constants, and lattice friction stresses. The lattice friction stresses of basal slip systems were set to be higher than that of pyramidal slip systems at 73 K. Then, the lattice friction stresses were set to be closer as the temperature increases. It was found that the activation of slip systems is strong temperature dependent, and that the yield stress depends on the number of active slip systems.


Sign in / Sign up

Export Citation Format

Share Document