Piping and Equipment Dynamics of High Rate HVGO Pumps

Author(s):  
Alwyn Kaye

Abstract A set of Heavy Vacuum Gas Oil (HVGO) pumps in a 300 kbbl/day operating Upgrader Plant experienced repeated failures; typically less than 7 weeks. The pumps run continuously in a high-pressure, high temperature and corrosive environment and their functional status directly affects the reliability of the plant. Upon research, an experimental strain measurement technique using very high resolution laser digital imagery and optical metrology was found from military and advanced aerospace applications to verify high level dimensional accuracy of critical components [1]. Application to a complex and operating bitumen upgrader was unknown. The objective of this project was to use advanced optical metrology with digital image processing techniques employing multiple laser and high-speed cameras capable of generating pump and pipe component’s real time strain images, displacement and rate of change. Optical metrology can analyze the mechanical properties and behavior of many materials and in various test scenarios [2]. Hot and cold operating service, with variations in flow and temperature all dynamically affect the strain measurements. Three significant advantages of the optical method are: i. Avoids a host of problems of strain gauge application, wiring and setup. ii. The problems of temperature sensitivity and correction are overcome. [3] iii. Gathers much more extensive data than possible with traditional methods. The vibration characteristics of the pumps and related hardware were analyzed using high resolution laser and photogrammetric digital imagery and digital strain mapping analysis to determine the characteristics that would ensure the long-term reliable and safe operation of the HVGO pumps. The stress and deformation analysis were performed on the operating pumps in a variety of normal (1280 m3/hr.) and upset operating conditions including under partial and full load conditions. Dynamic and modal analysis of the pumps was developed and analyzed. The displacement and tensor fields of the hardware including the pumps, bases and piping were measured using high resolution laser cameras and analyzed. From the high-speed data gathering and loading analysis showed the deformation and stress affecting the pump and related hardware. The key variables undermining reliable performance were revealed and from the data the necessary remedial action was determined. The pumps have operated for over 30months to the time of writing without repeat failure. This paper should be read in conjunction with PVP 2020-21203; Investigation and Resolution of the Fluid Structure Interaction of High Rate HVGO Pumps.

Author(s):  
Joon-Hyung Kim ◽  
Joo-Hyun Rho

The pressure waves of a high-speed train in a tunnel exhibit complicated variations in their characteristics because the waves propagate and reflect with superposition. Studies have been consistently carried out on the pressure waves of a single train since changes in the area of pressure is a key element that influences ride comfort. Recently, the frequency of the operation of coupled trains has increased in order to improve the efficiency of running a train. The cross-sectional area of a train entering a tunnel has a rate of change that greatly influences the pressure characteristics; therefore, a coupled train can have different pressure characteristics when compared to a single train. However, adequate research works have not been done to assess these characteristics. To this end, the pressure characteristics of a train according to the operating conditions are investigated in this study. A high-speed train operating in practice and a tunnel located in a service section were chosen for this study, and the pressure characteristics of a single train were assessed via numerical analysis and an experiment. The numerical analysis was carried out with high reliability by comparing and verifying each result. After the pressure wave characteristics caused by running a coupled train had been assessed by the established numerical analysis, an obvious pressure variation was confirmed to occur at the connecting point. In addition, the maximum pressure applied to a tunnel and a passenger car increased. Thus, the aerodynamic effect of a coupled train should be considered as an important parameter in the early design state of a new high-speed train.


Author(s):  
M. Pan

It has been known for many years that materials such as zeolites, polymers, and biological specimens have crystalline structures that are vulnerable to electron beam irradiation. This radiation damage severely restrains the use of high resolution electron microscopy (HREM). As a result, structural characterization of these materials using HREM techniques becomes difficult and challenging. The emergence of slow-scan CCD cameras in recent years has made it possible to record high resolution (∽2Å) structural images with low beam intensity before any apparent structural damage occurs. Among the many ideal properties of slow-scan CCD cameras, the low readout noise and digital recording allow for low-dose HREM to be carried out in an efficient and quantitative way. For example, the image quality (or resolution) can be readily evaluated on-line at the microscope and this information can then be used to optimize the operating conditions, thus ensuring that high quality images are recorded. Since slow-scan CCD cameras output (undistorted) digital data within the large dynamic range (103-104), they are ideal for quantitative electron diffraction and microscopy.


Author(s):  
Kenneth Krieg ◽  
Richard Qi ◽  
Douglas Thomson ◽  
Greg Bridges

Abstract A contact probing system for surface imaging and real-time signal measurement of deep sub-micron integrated circuits is discussed. The probe fits on a standard probe-station and utilizes a conductive atomic force microscope tip to rapidly measure the surface topography and acquire real-time highfrequency signals from features as small as 0.18 micron. The micromachined probe structure minimizes parasitic coupling and the probe achieves a bandwidth greater than 3 GHz, with a capacitive loading of less than 120 fF. High-resolution images of submicron structures and waveforms acquired from high-speed devices are presented.


Author(s):  
Zumrat Usmanova ◽  
Emin Sunbuloglu

Numerical simulation of automotive tires is still a challenging problem due to their complex geometry and structures, as well as the non-uniform loading and operating conditions. Hysteretic loss and rolling resistance are the most crucial features of tire design for engineers. A decoupled numerical model was proposed to predict hysteretic loss and temperature distribution in a tire, however temperature dependent material properties being utilized only during the heat generation analysis stage. Cyclic change of strain energy values was extracted from 3-D deformation analysis, which was further used in a thermal analysis as input to predict temperature distribution and thermal heat generation due to hysteretic loss. This method was compared with the decoupled model where temperature dependence was ignored in both deformation and thermal analysis stages. Deformation analysis results were compared with experimental data available. The proposed method of numerical modeling was quite accurate and results were found to be close to the actual tire behavior. It was shown that one-way-coupled method provides rolling resistance and peak temperature values that are in agreement with experimental values as well.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1738
Author(s):  
Vanessa Neves Höpner ◽  
Volmir Eugênio Wilhelm

The use of static frequency converters, which have a high switching frequency, generates voltage pulses with a high rate of change over time. In combination with cable and motor impedance, this generates repetitive overvoltage at the motor terminals, influencing the occurrence of partial discharges between conductors, causing degradation of the insulation of electric motors. Understanding the effects resulting from the frequency converter–electric motor interaction is essential for developing and implementing insulation systems with characteristics that support the most diverse applications, have an operating life under economically viable conditions, and promote energy efficiency. With this objective, a search was carried out in three recognized databases. Duplicate articles were eliminated, resulting in 1069 articles, which were systematically categorized and reviewed, resulting in 481 articles discussing the causes of degradation in the insulation of electric motors powered by frequency converters. A bibliographic portfolio was built and evaluated, with 230 articles that present results on the factors that can be used in estimating the life span of electric motor insulation. In this structure, the historical evolution of the collected information, the authors who conducted the most research on the theme, and the relevance of the knowledge presented in the works were considered.


Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 35
Author(s):  
Hind R. Mohammed ◽  
Zahir M. Hussain

Accurate, fast, and automatic detection and classification of animal images is challenging, but it is much needed for many real-life applications. This paper presents a hybrid model of Mamdani Type-2 fuzzy rules and convolutional neural networks (CNNs) applied to identify and distinguish various animals using different datasets consisting of about 27,307 images. The proposed system utilizes fuzzy rules to detect the image and then apply the CNN model for the object’s predicate category. The CNN model was trained and tested based on more than 21,846 pictures of animals. The experiments’ results of the proposed method offered high speed and efficiency, which could be a prominent aspect in designing image-processing systems based on Type 2 fuzzy rules characterization for identifying fixed and moving images. The proposed fuzzy method obtained an accuracy rate for identifying and recognizing moving objects of 98% and a mean square error of 0.1183464 less than other studies. It also achieved a very high rate of correctly predicting malicious objects equal to recall = 0.98121 and a precision rate of 1. The test’s accuracy was evaluated using the F1 Score, which obtained a high percentage of 0.99052.


2008 ◽  
Vol 18 (02) ◽  
pp. 393-400 ◽  
Author(s):  
ROBERT J. GRASSO ◽  
JOHN C. WIKMAN ◽  
DAVID P. DROUIN ◽  
GEORGE F. DIPPEL ◽  
PAUL I. EGBERT

BAE SYSTEMS has developed a Low Cost Targeting System (LCTS) consisting of a FLIR for target detection, laser-illuminated, gated imaging for target identification, laser rangefinder and designator, GPS positioning, and auto-tracking capability within a small compact system size. The system is based upon BAE Systems proven micro-bolometer passive LWIR camera coupled with Intevac's new EBAPS camera. A dual wavelength diode pumped laser provides eyesafe ranging and target illumination, as well as designation; a custom detector module senses the return pulse for target ranging and to set the range gates for the gated camera. Trials show that the current detectors offer complete extinction of signals outside of the gated range, thus, providing high resolution within the gated region. The images have shown high spatial resolution arising from the use of solid state focal plane array technology. Imagery has been collected in both the laboratory and the field to verify system performance during a variety of operating conditions.


1986 ◽  
Vol 22 (6) ◽  
pp. 338 ◽  
Author(s):  
W.T. Ng ◽  
C.A.T. Salama

Sign in / Sign up

Export Citation Format

Share Document