Effect of TiC Content on Friction and Wear Behavior of Al-TiC Composites

Author(s):  
Rajnesh Tyagi

The Al-TiC composites containing three different volume fractions 0.07, 0.12 and 0.18 of TiC have been fabricated and wear characteristics of Al-TiC composites have been investigated under dry sliding. Dry sliding wear tests have been carried out using a pin-on-disk wear tester at normal loads of 9.8, 14.7, 19.6 and 24.5 N and at a constant sliding velocity of 1.0 m/s. The wear rate has been found to vary linearly following Archard’s law. The wear rate is significantly lower in composites as compared to that in base material. The wear mechanism appears to be primarily oxidative under the test conditions taken in the present investigation. Average coefficient of friction also decreases linearly with increasing normal load and volume fraction of TiC.

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1749 ◽  
Author(s):  
Qing Zhang ◽  
Jie Gu ◽  
Shuo Wei ◽  
Ming Qi

The dry sliding wear behavior of the Al-12Si-CuNiMg matrix alloy and its composite reinforced with Al2O3 fibers was investigated using a pin-on-disk wear-testing machine. The volume fraction of Al2O3 fibers in the composite was 17 vol.%. Wear tests are conducted under normal loads of 2.5, 5.0, and 7.5 N, and sliding velocities of 0.25, 0.50, and 1.0 m/s. Furthermore, the worn surfaces of the matrix alloy and the composite were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the wear resistance of the composite was inferior to that of the matrix alloy, which could be attributed to the high content of reinforcement and casting porosities in the composite. Worn-surface analysis indicates that the dominant wear mechanisms of both materials were abrasive wear and adhesive wear under the present testing conditions.


2016 ◽  
Vol 35 (5) ◽  
pp. 487-492
Author(s):  
Ahmet Karaaslan ◽  
Alptekin Kısasöz ◽  
Ş. Hakan Atapek ◽  
Kerem Altuğ Güler

AbstractThe wear behavior of cast A7075 and A7075/SAF 2205 composite material fabricated by vacuum-assisted investment flask casting was investigated under dry sliding condition. The wear tests were carried out using a “ball-on-disc” type tribometer. In the wear tests, 100Cr6 and ZrO2 balls were used as counterparts and the load, total distance and rotating speed were selected as 10 N, 100 m and 100 rpm, respectively. The results were evaluated using the friction coefficient–distance diagram, weight loss and wear rate. All worn surfaces were examined by scanning electron microscope and wear characteristics of the materials were discussed as a function of the microstructural features. It was concluded that composite material had lower friction coefficient, less weight loss and slower wear rate than that of cast material.


2007 ◽  
Vol 534-536 ◽  
pp. 673-676 ◽  
Author(s):  
Ahmet Güral ◽  
Süleyman Tekeli ◽  
Dursun Özyürek ◽  
Metin Gürü

The effect of repeated quenching heat treatment on microstructure and dry sliding wear behavior of low carbon PM steel was investigated. For this purpose, atomized iron powder was mixed with 0.3 % graphite and 1 % Ni powders. The mixed powders were cold pressed and sintered at 1200°C for 30 min under pure Ar gas atmosphere. Some of the sintered specimens were intercritically annealed at 760°C and quenched in water (single quenching). The other sintered specimens were first fully austenized at 890°C and water quenched. These specimens were then intercritically annealed at 760°C and re-quenched in water. The martensite volume fraction in the double quenched specimens was higher than that of the single quenched specimen. Wear tests were carried out on the single and double quenched specimens under dry sliding wear condition using a pin-on-disk type machine at constant load and speed. The experimental results showed that the wear coefficient effectively decreased in the double quenched specimen.


2013 ◽  
Vol 6 (2) ◽  
pp. 139-153
Author(s):  
Israa .A.K

This research is devoted to study the effect of addition of different weight percent from SiCp ( 2, 4, 6, 8 ) to Al– 4 Cu alloy which have been fabricated by liquid metallurgy method on the dry sliding wear behavior and mechanical properties. Wear characteristics of Al–SiC composites have been investigated under dry sliding conditions and compared with base alloy. Dry sliding wear tests have been carried out using pin-on-disk wear test under normal applied loads 5, 10, 15 and 20 N and at different sliding velocity of (2.7, 3.7, 4.7) m/sec. It was also observed that the wear rate varies linearly with increases normal applied load but lower in composites as compared to the base material. The wear mechanism appears to be oxidative for both Al – Cu alloy and composites under the given conditions of load and sliding velocity as indicated by optical microscopic of the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight percent of silicon carbide. The best results have been obtained at 8 % wt SiC . We also observed that the yield strength, tensile strength increases with increasing wt% of SiC , but the ductility decreases.


2015 ◽  
Vol 817 ◽  
pp. 661-666 ◽  
Author(s):  
Yuan Gao ◽  
Jin Chuan Jie ◽  
Peng Chao Zhang ◽  
Jian Zhang ◽  
Tong Min Wang ◽  
...  

The dry sliding wear behavior of Cu-Cr-Zr alloy prepared by electromagnetic horizontal continuous casting was investigated. The wear behavior of the studied alloy was discussed in terms of friction coefficient, mass loss/sliding, specific wear rate and wear mechanism. The results indicate that with the increasing normal load and sliding velocity, the friction coefficient of Cu-Cr-Zr alloy decreased monotonically, the mass loss/sliding and specific wear rate increased. By wear surface morphology and composition analysis, the wear mechanisms were discussed preliminary. Oxidation and abrasion mechanisms dominated at the lower sliding velocities and loads. Increasing loads and velocities led to a combination of oxidation and adhesion. Plastic deformation was dominant for the higher applied load and sliding velocities.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Vineet Tirth

AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1618 ◽  
Author(s):  
Zhaohuan Song ◽  
Songhao Zhao ◽  
Tao Jiang ◽  
Junjie Sun ◽  
Yingjun Wang ◽  
...  

In this work, a multiphase microstructure consisting of nanobainte, martensite, undissolved spherical carbide, and retained blocky austenite has been prepared in an Al-alloyed high carbon steel. The effect of the amount of nanobainite on the dry sliding wear behavior of the steel is studied using a pin-on-disc tester with loads ranging from 25–75 N. The results show that, there is no significant differences in specific wear rate (SWR) for samples with various amounts of nanobainite when the normal load is 25 N. While, the SWR firstly decreases and then increases with increasing the amount of nanobainite, and the optimum wear resistance is obtained for samples with 60 vol.% nanobainite, when the applied load increases to 50 and 75 N. The improved wear resistance is attributed to the peak hardness increment resulted from the transformation of retained austenite to martensite, work hardening, along with amorphization and nanocrystallization of the worn surface. In addition, the highest toughness of the samples with 60 vol.% nanobainite is also proven to play a positive role in resisting sliding wear. EDS (energy dispersion spectrum) and XRD (X-ray diffraction) examinations reveal that the predominant failure mechanism is oxidative wear.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 207
Author(s):  
Eleonora Santecchia ◽  
Marcello Cabibbo ◽  
Abdel Magid Salem Hamouda ◽  
Farayi Musharavati ◽  
Anton Popelka ◽  
...  

The applications of aluminum and its alloys are still limited by low hardness and low wear resistance properties. Surface modifications, such anodizing and plasma electrolytic oxidation, represent a feasible way to overcome these drawbacks. In this study, discs of AA6082 were subjected to the so-called G.H.A. hard anodizing process leading to an anodized layer having a honeycomb-like structure. Samples having alumina layer thicknesses of 10, 50 and 100 μm were subjected to unidirectional dry sliding wear tests, using bearing steel and silicon nitride as counterbody materials. Surface and structure characterization of the samples were performed before and after the tribological tests, using a wide range of techniques; atomic force microscopy and scanning electron microscopy techniques were used before the wear tests. The wear scars were characterized by scanning electron microscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy techniques. Results show that the different thickness of the anodized layer does not affect the pores dimensions but has an influence on the micrometric domains in which the pores are divided. These features coupled with the wear test conditions, show to have a strong influence on the wear behavior. The thinnest sample showed also the best performance against the ceramic counterbody.


2017 ◽  
Vol 52 (17) ◽  
pp. 2281-2288 ◽  
Author(s):  
S Sivakumar ◽  
S Senthil Kumaran ◽  
M Uthayakumar ◽  
A Daniel Das

The dry sliding wear behaviour of LM 24 aluminum alloy composites reinforced with garnet particles was evaluated. Stir casting technique was used to fabricate the composites. A pin-on-disc wear-testing machine was used to evaluate the wear rate, in which an EN 24 steel disc was used as the counterface. Results indicated that the wear rates of the composites were lower than that of the matrix alloy and further decreased with the increase in garnet content. However, in both unreinforced and reinforced composites, the wear rate increased with the increase in load and the sliding speed. Increase in the applied load increased the wear severity by changing the wear mechanism from abrasion to particle cracking-induced delamination wear. It was found that with the increase in garnet content, the wear resistance increased monotonically. The observations have been explained using scanning electron microscopy analysis of the worn surfaces and the subsurface of the composites. In this work, the most influencing input and output parameters have been performed and the process parameters have been prioritized using genetic algorithm. Genetic algorithm is used to optimize the most influencing input as well as output process parameters. The practical significance of applying genetic algorithm to dry sliding wear behavior process has been validated by means of computing the deviation between predicted and experimentally obtained wear behavior of metal matrix composite.


Sign in / Sign up

Export Citation Format

Share Document