Comparison of WC/DLC/WS2 and YSZ/Au/DLC/MoS2 “Chameleon” Coatings for Tribological Applications

Author(s):  
C. C. Baker ◽  
A. A. Voevodin ◽  
J. S. Zabinski

Chameleon coatings are nanocomposite systems that adapt their tribological performance to changes in environmental conditions such as humidity and temperature. In this research we have investigated the tribological properties of two nanocomposite “chameleon” coatings and compared their properties. The two material systems of interest included: (i) Diamond like carbon (DLC) matrix with nanocrystalline WC and WS2 inclusions, and (ii) Yttrium Stabilized Zirconia (YSZ) in an Au matrix with DLC and MoS2 nanoparticle inclusions. The coating design approach included formation of nanocrystalline hard carbide or oxide particles for wear resistance, embedding them into an amorphous matrix for toughness enhancement, and inclusion of nanocrystalline and/or amorphous solid lubricants for friction adaptation to different environments. The coatings were produced using a combination of laser ablation and magnetron sputtering. Chemical and structural analysis of the coatings included x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, and micro-Raman spectroscopy. Mechanical properties such as coating hardness and toughness were investigated using nanoindentation, scratch, and indentation adhesion tests. It was observed that both YSZ and WC are valuable in enhancing film toughness. The chemical analysis was used to ascertain a correlation between chemical bonding of species and frictional properties. Friction measurements were studied by cycling between humid air and dry nitrogen conditions. The graphitic carbon component imparted low friction in humid air, MoS2 and WS2 were excellent for dry N2 conditions, and Au was valuable for low friction at elevated temperatures. The direct comparison among coatings demonstrates that similar “chameleon” behavior can be achieved with different material systems, validating the universal nature of the design approach.

Author(s):  
C. Muratore ◽  
A. A. Voevodin ◽  
J. J. Hu ◽  
J. S. Zabinski

A hybrid magnetron sputtering/pulsed laser deposition process was used to grow nanocrystalline yttria stabilized zirconia (YSZ) embedded in an amorphous YSZ/metal matrix. This nanocomposite design reduced friction and improved the toughness of YSZ. Films containing both silver and molybdenum exhibited friction coefficients between 0.2 and 0.4 in air (40% relative humidity) against silicon nitride balls at temperatures between 25° C and 700 °C. Additional solid lubricants reduced the friction coefficient to <0.2 for over 10000 cycles at all temperatures. A multilayer film architecture was developed to further enhance the lifetime of the adaptive coatings. Electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy were used to correlate adaptive behavior at different temperatures to the composition and structure of the films.


2018 ◽  
Vol 51 (3) ◽  
pp. 719-727 ◽  
Author(s):  
Yasumasa Takagi ◽  
Tomoya Uruga ◽  
Mizuki Tada ◽  
Yasuhiro Iwasawa ◽  
Toshihiko Yokoyama

CORROSION ◽  
10.5006/3881 ◽  
2021 ◽  
Author(s):  
Zachary Karmiol ◽  
Dev Chidambaram

This work investigates the oxidation of a nickel based superalloy, namely Alloy X, in water at elevated temperatures: subcritical water at 261°C and 27 MPa, the transition between subcritical and supercritical water at 374°C and 27 MPa, and supercritical water at 380°C and 27 MPa for 100 hours. The morphology of the sample surfaces were studied using scanning electron microscopy coupled with focused ion beam milling, and the surface chemistry was investigated using X-ray diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy before and after exposure studies. Surfaces of all samples were identified to comprise of a ferrite spinel containing aluminum.


2021 ◽  
Vol 12 ◽  
pp. 1173-1186
Author(s):  
Markus Gehring ◽  
Tobias Kutsch ◽  
Osmane Camara ◽  
Alexandre Merlen ◽  
Hermann Tempel ◽  
...  

An innovative approach for the design of air electrodes for metal–air batteries are free-standing scaffolds made of electrospun polyacrylonitrile fibres. In this study, cobalt-decorated fibres are prepared, and the influence of carbonisation temperature on the resulting particle decoration, as well as on fibre structure and morphology is discussed. Scanning electron microscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis, and inductively coupled plasma optical emission spectrometry are used for characterisation. The modified fibre system is compared to a benchmark system without cobalt additives. Cobalt is known to catalyse the formation of graphite in carbonaceous materials at elevated temperatures. As a result of cobalt migration in the material the resulting overall morphology is that of turbostratic carbon. Nitrogen removal and nitrogen-type distribution are enhanced by the cobalt additives. At lower carbonisation temperatures cobalt is distributed over the surface of the fibres, whereas at high carbonisation temperatures it forms particles with diameters up to 300 nm. Free-standing, current-collector-free electrodes assembled from carbonised cobalt-decorated fibre mats display promising performance for the oxygen reduction reaction in aqueous alkaline media. High current densities at an overpotential of 100 mV and low overpotentials at current densities of 333 μA·cm−2 were found for all electrodes made from cobalt-decorated fibre mats carbonised at temperatures between 800 and 1000 °C.


2014 ◽  
Vol 922 ◽  
pp. 598-603
Author(s):  
Gerald Ressel ◽  
Peter Parz ◽  
Alexander Fian ◽  
David Holec ◽  
Sophie Primig ◽  
...  

Mechanical alloying (MA) is an established way to prepare nanocrystalline materials and metastable solutions of materials, which normally have no mutual solubility. This is also the case for oxide dispersion strengthened (ODS) steels with improved mechanical properties at elevated temperatures. It is known that a small addition of yttria (Y2O3) has a beneficial effect on high temperature strength and reduces the creep rate in mechanically alloyed ferritic steels by about six orders of magnitude. In this work we present an experimental study using atom probe tomography, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy combined with first principles modeling focusing on the distribution and behavior of yttria in pure iron prepared by mechanical alloying. Atom probe tomography and X-ray photoelectron spectroscopy measurements as well as positron annihilation spectroscopy conducted on powder particles directly after milling have revealed that a predominantly fraction of the yttria powder dissolves in the iron matrix and Y atoms occupy convenient positions, such as vacancies or dislocations. This is supported by ab initio calculations demonstrating that the formation energy for Y substitutional defects in bcc-Fe is significantly lower in the close neighborhood of vacancies.


1995 ◽  
Vol 02 (02) ◽  
pp. 141-145 ◽  
Author(s):  
E. WETLI ◽  
M. HOCHSTRASSER ◽  
D. PESCIA ◽  
M. ERBUDAK

In the bulk binary alloy Al-3 at.% Ag , Ag 2 Al precipitates are formed below 410°C which are reversibly dissolved at elevated temperatures. We have followed this phase transition at a (100) surface as a function of temperature by monitoring the bandwidth of the Ag 4d states in X-ray photoelectron spectroscopy. Since the bandwidth measures the coordination number of the emitting atoms, it directly reveals the short-range order of the Ag atoms at the surface. The measurements show that the dissolution of the Ag -rich clusters starts at temperatures at least 100 K below the bulk transition, and the observed hysteresis behavior is indicative of a first-order phase transition at the surface.


2009 ◽  
Vol 75 ◽  
pp. 37-42
Author(s):  
P.L. Tam ◽  
Zhi Feng Zhou ◽  
P.W. Shum ◽  
K.Y. Li

Quaternary CrTiAlN hard coatings were deposited by closed field unbalanced magnetron sputtering ion plating technique onto steel substrates, and their structural, mechanical, and tribological properties after heat treatment in air at different temperatures (500-900 oC) were studied and compared by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-indentation, and pin-on-disc (POD) tribometer, etc. The onset temperature of oxidation was determined by thermogravimetric analyser (TGA). The compositional depth profiles before and after the heat treatments were examined by X-ray photoelectron spectroscopy (XPS) in order to study the oxidation mechanism. The experimental results indicate that the CrTiAlN coatings have excellent oxidation resistance and thermal stability, and outperform the traditional hard coatings like TiN and TiAlN in terms of higher oxidation temperature, hardness, adhesion, and wear resistance. It is expected that the CrTiAlN coatings with superior properties should have better performance in dry high speed machining.


2020 ◽  
Author(s):  
Pablo Lustemberg ◽  
Feng Zhang ◽  
Ramón A. Gutiérrez ◽  
Pedro J. Ramírez ◽  
Sanjaya D. Senanayake ◽  
...  

The clean activation of methane at low temperatures remains an eminent challenge and a field of competitive research. In particular, on late transition metal surfaces such as Pt(111) or Ni(111), elevated temperatures are necessary to activate the hydrocarbon molecule, but a massive deposition of carbon makes the metal surface useless for catalytic activity. However, on very low-loaded M/CeO2 (M= Pt, Ni, or Co) surfaces, the dissociation of methane occurs at room temperature, which is unexpected considering simple linear scaling relationships. This intriguing phenomenon has been studied using a combination of experimental techniques (ambient-pressure X-ray photoelectron spectroscopy, time-resolved X-ray diffraction and X-ray absorption spectroscopy) and density functional theory-based calculations. The experimental and theoretical studies show that the size and morphology of the supported nanoparticles together with strong metal-support interactions are behind the deviations from the scaling relations. These findings point toward a possible strategy to circumvent scaling relations, producing active and stable catalysts which can be employed for methane activation and conversion. <br>


2021 ◽  
Vol 118 (49) ◽  
pp. e2108325118
Author(s):  
Wahid Zaman ◽  
Ray A. Matsumoto ◽  
Matthew W. Thompson ◽  
Yu-Hsuan Liu ◽  
Yousuf Bootwala ◽  
...  

A continuum of water populations can exist in nanoscale layered materials, which impacts transport phenomena relevant for separation, adsorption, and charge storage processes. Quantification and direct interrogation of water structure and organization are important in order to design materials with molecular-level control for emerging energy and water applications. Through combining molecular simulations with ambient-pressure X-ray photoelectron spectroscopy, X-ray diffraction, and diffuse reflectance infrared Fourier transform spectroscopy, we directly probe hydration mechanisms at confined and nonconfined regions in nanolayered transition-metal carbide materials. Hydrophobic (K+) cations decrease water mobility within the confined interlayer and accelerate water removal at nonconfined surfaces. Hydrophilic cations (Li+) increase water mobility within the confined interlayer and decrease water-removal rates at nonconfined surfaces. Solutes, rather than the surface terminating groups, are shown to be more impactful on the kinetics of water adsorption and desorption. Calculations from grand canonical molecular dynamics demonstrate that hydrophilic cations (Li+) actively aid in water adsorption at MXene interfaces. In contrast, hydrophobic cations (K+) weakly interact with water, leading to higher degrees of water ordering (orientation) and faster removal at elevated temperatures.


2020 ◽  
Vol 10 (13) ◽  
pp. 4651
Author(s):  
Pengyu Hou ◽  
Ming Zhou ◽  
Haijun Zhang

Single-crystal diamonds are considered as the best tool material for ultra-precision machining. However, due to its low thermal conductivity, small elastic modulus and strong chemical activity, titanium alloy has poor machinability and is a typically difficult-to-machine material. Excessive tool wear prevents diamonds from cutting titanium alloy. This study conducts a series of thermal analytic experiments under conditions of different gas atmospheres in order to research the details of thermochemical wear of diamonds catalyzed by titanium alloy at elevated temperatures. Raman scattering analysis was performed to identify the transformation of the diamond crystal structure. The change in chemical composition of the work material was detected be means of energy dispersive X-ray analysis. X-ray photoelectron spectroscopy was used to confirm the resultant interfacial thermochemical reactions. The results of the study reveal the diffusion law of the single-crystal diamond under the action of titanium in the argon and air environment. From the experimental results, the product of the chemical reaction corresponding to the interface between the diamond and the titanium alloy sheet could be found. The research results provide a theoretical basis for elucidating the wear mechanism of diamond tools in the titanium alloy cutting process and for exploring the measures to suppress tool wear.


Sign in / Sign up

Export Citation Format

Share Document