Oxidation Resistance of Multicomponent CrTiAlN Hard Coatings at Elevated Temperatures

2009 ◽  
Vol 75 ◽  
pp. 37-42
Author(s):  
P.L. Tam ◽  
Zhi Feng Zhou ◽  
P.W. Shum ◽  
K.Y. Li

Quaternary CrTiAlN hard coatings were deposited by closed field unbalanced magnetron sputtering ion plating technique onto steel substrates, and their structural, mechanical, and tribological properties after heat treatment in air at different temperatures (500-900 oC) were studied and compared by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-indentation, and pin-on-disc (POD) tribometer, etc. The onset temperature of oxidation was determined by thermogravimetric analyser (TGA). The compositional depth profiles before and after the heat treatments were examined by X-ray photoelectron spectroscopy (XPS) in order to study the oxidation mechanism. The experimental results indicate that the CrTiAlN coatings have excellent oxidation resistance and thermal stability, and outperform the traditional hard coatings like TiN and TiAlN in terms of higher oxidation temperature, hardness, adhesion, and wear resistance. It is expected that the CrTiAlN coatings with superior properties should have better performance in dry high speed machining.

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1932
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Yuriy Pogozhev ◽  
Stepan Vorotilo ◽  
Anton Orekhov ◽  
...  

Coatings in a Zr-Mo-Si-B-N system were deposited by the magnetron sputtering of ZrB2-MoSi2 targets in argon and nitrogen. The structure of the coatings was investigated using scanning electron microscopy, X-ray diffraction, energy-dispersive spectroscopy, and glow-discharge optical emission spectroscopy. Mechanical and tribological properties were measured using nanoindentation and pin-on-disc testing. Oxidation resistance and oxidation kinetics were estimated via annealing in air at 1000–1500 °C and precision weight measurements. We found that the coatings deposited in Ar demonstrate a superior combination of properties, including hardness of 36 GPa, elastic recovery of 84%, a friction coefficient of 0.6, and oxidation resistance at temperatures up to 1200 °C. High oxidation resistance is realized due to the formation of the protective (SiO2 + ZrO2)/SiO2 oxide layer, which inhibits the diffusion of oxygen into the coating.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 787
Author(s):  
Weiqi Wang ◽  
Xiaoming Ling ◽  
Rui Wang ◽  
Wenhao Nie ◽  
Li Ji ◽  
...  

The spontaneously self-organizing multilayered graphite-like carbon (denoted as GLC) /TiC films with various bilayer periods in the range of 13.3–17.5 nm were deposited on silicon and 1Cr18Mn8Ni5N stainless steel substrates using closed field magnetron sputtering deposition facility. The microstructures and chemical compositions of the prepared multilayered films were characterized by scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy respectively. The self-organizing multilayered structures in all of the films consisted of titanium carbide layers and sp2-rich carbon layers periodically alternate arrangement. The TiC contents and bilayer periods of the multilayered films can be controlled by means of adjusting of sputtering current of graphite target. Furthermore, the mechanical and tribological performances of the prepared films were appraised by nano-indentor, scratch measures, and ball-on-plate tribometer respectively. The results indicated that multilayer structure endowed the as-deposited TiC/GLC films outstanding mechanical and tribological properties, especially the multilayer film with 15.9 nm bilayer period deposited at 10 A sputtering current showed the excellent adhesion strength and hardness; Simultaneously it also exhibited the lowest average friction coefficient in the humid environment owing to its high content of sp2 hybrid carbon.


2009 ◽  
Vol 75 ◽  
pp. 7-12
Author(s):  
P.W. Shum ◽  
Zhi Feng Zhou ◽  
K.Y. Li

Carbon ion implantation has often been considered as an additional method to further improve the wear, corrosion and oxidation resistance of hard coatings on tools or machine parts. The present research investigates the effect of carbon implantation on the structural and mechanical properties of the sputter-deposited solid solution Ti-Al-N coatings. The carbon implantation was carried out by using metal vapour vacuum arc ion source (MEVVA) with solid cathode at energies of 5 and 50 keV, and a dose of 6×1017 atoms cm-2. The mechanical and the microstructure properties of the implanted layer were identified by a variety of analytic techniques, such as nano-indentation, x-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) etc. Additionally, the wear performance of the samples was evaluated by a typical ball-on-disk tribometer in dry conditions. The results showed that the coatings with high energy carbon implantation exhibited an enhanced hardness. The improved hardness could be attributed to the formation of TiC phase, as indicated in XPS. In the sliding tests, the coatings with the post-treatment of carbon implantation showed an improved tribological property in terms of friction coefficient and wear rate. The friction coefficient could be reduced from 0.6 to 0.1. The coatings had ten-fold better wear resistance than the coating without ion implantation.


2013 ◽  
Vol 765 ◽  
pp. 703-707
Author(s):  
Qiao Qin Guo ◽  
Jian Ping Li ◽  
Yong Chun Guo

The influences of microstructure and tribological properties of Cp/AlSn (Cp: carbon particule) composite films were applied to AlZn4.5Mg bearing alloy substrates using the closed-field unbalanced magnetron sputtering ion plating technique. The microstructure, phases and bond states of the coatings were separately characterized by X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The friction coefficients were measured using a pin-on-disc set-up. Results showed that the grain size and roughness of the films both decreased with increasing of carbon target current (IC) from 0.2 A to 0.8 A. Phases in the films were Al, Sn and C, although the films transformed from a crystalline state to amorphous when the carbon target current was applied. Al and Sn existed as pure metals. Carbon, composed of sp2and sp3bonds, mainly as sp2bonds, provided transfer films to reduce the friction coefficient of the films from 0.35 to 0.15. The specific wear ratio was a minimum, when the carbon target current was 0.4 A.


2012 ◽  
Vol 625 ◽  
pp. 263-268
Author(s):  
Peng Fei Hu ◽  
Guo Jie Yin ◽  
Si Kai Zhou

The influence of carbon doping on tribological properties of CrCN Coating was studied through preparation of coatings deposited on single crystal silicon and M2 high speed steel(HSS) substrate using closed-field unbalanced magnetron sputtering ion plating technique. The friction coefficients were measured by pin-on-disc set-up. The microstructure and bond states of the coatings were characterized by X-ray diffraxtion(XRD), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). The results show that the friction coefficient of coating decreases from 0.75 to 0.38, the microhardness increases from 1930HV to 2302HV, and the specific wear ratio of the coatings decreases from 8.35110-5m3/Nm to 3.85910-5m3/Nm with the increasing of carbon target current(IC) from 0A to 1.5A. The analysis of microstructure shows that the coatings transform from crystalline state to amorphous state and the grain size of the coatings decreases with the increasing of carbon target current.


CORROSION ◽  
10.5006/3881 ◽  
2021 ◽  
Author(s):  
Zachary Karmiol ◽  
Dev Chidambaram

This work investigates the oxidation of a nickel based superalloy, namely Alloy X, in water at elevated temperatures: subcritical water at 261°C and 27 MPa, the transition between subcritical and supercritical water at 374°C and 27 MPa, and supercritical water at 380°C and 27 MPa for 100 hours. The morphology of the sample surfaces were studied using scanning electron microscopy coupled with focused ion beam milling, and the surface chemistry was investigated using X-ray diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy before and after exposure studies. Surfaces of all samples were identified to comprise of a ferrite spinel containing aluminum.


2021 ◽  
Vol 12 ◽  
pp. 1173-1186
Author(s):  
Markus Gehring ◽  
Tobias Kutsch ◽  
Osmane Camara ◽  
Alexandre Merlen ◽  
Hermann Tempel ◽  
...  

An innovative approach for the design of air electrodes for metal–air batteries are free-standing scaffolds made of electrospun polyacrylonitrile fibres. In this study, cobalt-decorated fibres are prepared, and the influence of carbonisation temperature on the resulting particle decoration, as well as on fibre structure and morphology is discussed. Scanning electron microscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis, and inductively coupled plasma optical emission spectrometry are used for characterisation. The modified fibre system is compared to a benchmark system without cobalt additives. Cobalt is known to catalyse the formation of graphite in carbonaceous materials at elevated temperatures. As a result of cobalt migration in the material the resulting overall morphology is that of turbostratic carbon. Nitrogen removal and nitrogen-type distribution are enhanced by the cobalt additives. At lower carbonisation temperatures cobalt is distributed over the surface of the fibres, whereas at high carbonisation temperatures it forms particles with diameters up to 300 nm. Free-standing, current-collector-free electrodes assembled from carbonised cobalt-decorated fibre mats display promising performance for the oxygen reduction reaction in aqueous alkaline media. High current densities at an overpotential of 100 mV and low overpotentials at current densities of 333 μA·cm−2 were found for all electrodes made from cobalt-decorated fibre mats carbonised at temperatures between 800 and 1000 °C.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5043
Author(s):  
Chia-Hsun Hsu ◽  
Xin-Peng Geng ◽  
Wan-Yu Wu ◽  
Ming-Jie Zhao ◽  
Xiao-Ying Zhang ◽  
...  

In this study, aluminum-doped zinc oxide (Al:ZnO) thin films were grown by high-speed atmospheric atomic layer deposition (AALD), and the effects of air annealing on film properties are investigated. The experimental results show that the thermal annealing can significantly reduce the amount of oxygen vacancies defects as evidenced by X-ray photoelectron spectroscopy spectra due to the in-diffusion of oxygen from air to the films. As shown by X-ray diffraction, the annealing repairs the crystalline structure and releases the stress. The absorption coefficient of the films increases with the annealing temperature due to the increased density. The annealing temperature reaching 600 °C leads to relatively significant changes in grain size and band gap. From the results of band gap and Hall-effect measurements, the annealing temperature lower than 600 °C reduces the oxygen vacancies defects acting as shallow donors, while it is suspected that the annealing temperature higher than 600 °C can further remove the oxygen defects introduced mid-gap states.


2010 ◽  
Vol 25 (12) ◽  
pp. 2362-2370 ◽  
Author(s):  
Andrey V. Blednov ◽  
Oleg Yu. Gorbenko ◽  
Dmitriy P. Rodionov ◽  
Andrey R. Kaul

The early stages of surface oxidation of biaxially textured Ni–W tapes were studied using thermodynamic calculations along with experimental tape oxidation at low P(O2). Tape phase and chemical composition, surface morphology, and roughness were examined using x-ray diffraction (XRD), energy-dispersive x-ray analysis (EDX), secondary ion mass spectroscopy (SIMS), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). For a Ni0.95W0.05 alloy tape, the precise position of the tape oxidation line in P(O2)–T coordinates was established. This line includes a break at T ≈ 650 °C that originates from the change of the W oxidation mechanism from internal oxidation to oxidation on a free surface accompanied by segregation of the alloy components in the tape near-surface region. The surface roughness of a polished tape increased drastically during internal oxidation of W; further tape oxidation did not affect the integral roughness parameters, but introduced numerous small (˜;100 nm) features on the tape surface comprising NiO precipitates.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 946
Author(s):  
Ph. V. Kiryukhantsev-Korneev ◽  
A. D. Sytchenko ◽  
S. A. Vorotilo ◽  
V. V. Klechkovskaya ◽  
V. Yu. Lopatin ◽  
...  

Coatings in the Ta-Zr-Si-B-C-N system were produced by magnetron sputtering of a TaSi2-Ta3B4-(Ta,Zr)B2 ceramic target in the Ar medium and Ar-N2 and Ar-C2H4 gas mixtures. The structure and composition of coatings were studied using scanning electron microscopy, glow discharge optical emission spectroscopy, energy-dispersion spectroscopy, and X-ray diffraction. Mechanical and tribological properties of coatings were determined using nanoindentation and pin-on-disk tests using 100Cr6 and Al2O3 balls. The oxidation resistance of coatings was evaluated by microscopy and X-ray diffraction after annealing in air at temperatures up to 1200 °C. The reactively-deposited coatings containing from 30% to 40% nitrogen or carbon have the highest hardness up to 29 GPa and elastic recovery up to 78%. Additionally, coatings with a high carbon content demonstrated a low coefficient of friction of 0.2 and no visible signs of wear when tested against 100Cr6 ball. All coatings except for the non-reactive ones can resist oxidation up to a temperature of 1200 °C thanks to the formation of a protective film based on Ta2O5 and SiO2 on their surface. Coatings deposited in Ar-N2 and Ar-C2H4 demonstrated superior resistance to thermal cycling in conditions 20-T−20 °C (where T = 200–1000 °C). The present article compares the structure and properties of reactive and “standard-inert atmosphere” deposited coatings to develop recommendations for optimizing the composition.


Sign in / Sign up

Export Citation Format

Share Document