Differences in Human Cervical Spine Kinematics for Active and Passive Motions of Symptomatic and Asymptomatic Subject Groups

2013 ◽  
Vol 29 (5) ◽  
pp. 543-553 ◽  
Author(s):  
Brad Rutledge ◽  
Tamara Reid Bush ◽  
Joseph Vorro ◽  
Mingfei Li ◽  
Lisa DeStefano ◽  
...  

Most musculoskeletal disorders of the head and neck regions cannot be identified through imaging techniques; therefore clinician-conducted assessments (passive motions) are used to evaluate the functional ability of these regions. Although active motions do not require interaction with a clinician, these movements can also provide diagnostic indicators of dysfunction. The purpose of this research was to determine whether kinematic measures differed between active and passive movements of participants in symptomatic and asymptomatic groups. Data obtained on cervical lateral flexion range of motion (ROM), coupled axial rotation, and the angular velocity of lateral flexion were statistically analyzed and demonstrated differences between active and passive motions for symptomatic and asymptomatic subjects. Active motions had higher angular velocities (P< .001) and larger ROMs, with greater lateral flexions (P< .05). The asymptomatic group produced a larger average lateral flexion of 7.9° at an average angular velocity of 2 deg/s greater than the symptomatic group. Trends with regard to group assignment were the same for active and passive motions. This work demonstrates the potential for using kinematic measures of active and passive motions to develop an objective standard for diagnoses of cervical dysfunction and supports validity of the clinician-based analysis to distinguish between participant groups.

Author(s):  
Анатолий Александрович Буренин ◽  
Анастасия Валерьевна Ткачева

На примере составного диска, созданного посредством операции горячей посадки, изучается прочность такого соединения на отрыв. Отрывные усилия создаются в качестве центробежных инерционных сил при вращении диска относительное его центральной оси. Показывается, что созданный натяг в сборке имеет выраженную тенденцию к уменьшению. Однако для его обнуления необходимы достаточно значительные угловые скорости вращения. Приведен пример расчета придельной угловой скорости в зависимости от первоначального нагрева охватывающей детали сборки, термомеханических свойств материала сборки и геометрических параметров итоговой конструкции. Подобные расчеты в снижающемся натяге совершенно необходимы, когда эксплуатационные условия требуют принять вращение составного диска в качестве части его функциональных обязанностей. On the example of a composite disk, created by means of a hot-fit operation, the pulloff strength of such a disk is studied. separation forces as centrifugal forces with relative rotation of its central axis. It is shown that the created interference fit in the assembly has a pronounced tendency to decrease. However, for vanishing, sufficiently significant angular velocities of rotation are required. An example of calculating the near-limit angular velocity, depending on the original covered part of the assembly, of the thermomechanical properties of the material and the geometric characteristics of the final structure is given. Such computations in decreasing interference are essential when operating conditions require the rotation of the composite disc to be accepted as part of its functionality.


2021 ◽  
Vol 3 ◽  
Author(s):  
Najoua Assila ◽  
Cyril Delavallade ◽  
Yoann Blache ◽  
Christian Berger-Vachon ◽  
Philippe Collotte ◽  
...  

Canoe polo is an increasingly popular discipline requiring both kayaking and ball-handling skills. While the kinematics of the upper body during throw has been investigated for several overhead sports, the canoe polo throw has still to be studied. Therefore, the aim of this study is to analyze the canoe polo throw kinematics in terms of angles and inter-articular sequencing to understand its specificity. A secondary aim was to investigate whether adding pelvis mobility has an impact. Nineteen male players of canoe polo were equipped with reflective body markers for the throw analysis. They performed 5 throws with the pelvis fixed and 5 throws with additional pelvic mobility in rotation around a vertical axis. Inverse kinematics was performed with OpenSim providing pelvis, trunk, and glenohumeral rotations. Angular velocities were calculated to build the inter-articular sequences relative to these throws. Statistical parametric mapping was used to assess the effect of pelvis mobility on the throwing kinematics. Similar kinematics patterns as in other overhead sports were observed, however, a different inter-articular sequence was found for the canoe polo throw with a maximal angular velocity occurring sooner for the thorax in axial rotation than for the pelvis in rotation. While the limitation of rotation of the pelvis around a vertical axis has an influence on the pelvis and trunk kinematics, it did not modify the kinematic sequence.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Colin M. Huber ◽  
Declan A. Patton ◽  
Kathryn L. Wofford ◽  
Susan S. Margulies ◽  
D. Kacy Cullen ◽  
...  

Abstract Head impact sensors measure head kinematics in sports, and sensor accuracy is crucial for investigating the potential link between repetitive head loading and clinical outcomes. Many validation studies mount sensors to human head surrogates and compare kinematic measures during loading from a linear impactor. These studies are often unable to distinguish intrinsic instrumentation limitations from variability caused by sensor coupling. The aim of the current study was to evaluate intrinsic sensor error in angular velocity in the absence of coupling error for a common head impact sensor. Two Triax SIM-G sensors were rigidly attached to a preclinical rotational injury device and subjected to rotational events to assess sensor reproducibility and accuracy. Peak angular velocities between the SIM-G sensors paired for each test were correlated (R2 &gt; 0.99, y = 1.00x, p &lt; 0.001). SIM-G peak angular velocity correlated with the reference (R2 = 0.96, y = 0.82x, p &lt; 0.001); however, SIM-G underestimated the magnitude by 15.0% ± 1.7% (p &lt; 0.001). SIM-G angular velocity rise time (5% to 100% of peak) correlated with the reference (R2 = 0.97, y = 1.06x, p &lt; 0.001) but exhibited a slower fall time (100% to 5% of peak) by 9.0 ± 3.7 ms (p &lt; 0.001). Assessing sensor performance when rigidly coupled is a crucial first step to interpret on-field SIM-G rotational kinematic data. Further testing in increasing biofidelic conditions is needed to fully characterize error from other sources, such as coupling.


2018 ◽  
Vol 1 (84) ◽  
Author(s):  
Vilma Jurevičienė ◽  
Albertas Skurvydas ◽  
Juozas Belickas ◽  
Giedra Bušmanienė ◽  
Dovilė Kielė ◽  
...  

Research  background  and  hypothesis.  Proprioception  is  important  in  the  prevention  of  injuries  as  reduced proprioception  is  one  of  the  factors  contributing  to  injury  in  the  knee  joint,  particularly  the  ACL.  Therefore, proprioception appears not only important for the prevention of ACL injuries, but also for regaining full function after ACL reconstruction.Research aim. The aim of this study was to understand how proprioception is recovered four and five months after anterior cruciate ligament (ACL) reconstruction.Research methods. The study included 15 male subjects (age – 33.7 ± 2.49 years) who had undergone unilateral ACL reconstruction with a semitendinosus/gracilis (STG) graft in Kaunas Clinical Hospital. For proprioceptive assessment, joint position sense (JPS) was measured on both legs using an isokinetic dynamometer (Biodex), at knee flexion of 60° and 70°, and at different knee angular velocities of 2°/s and 10°/s. The patients were assessed preoperatively and after 4 and 5 months, postoperatively.Research results. Our study has shown that the JPS’s (joint position sense) error scores  to a controlled active movement is significantly higher in injured ACL-deficient knee than in the contralateral knee (normal knee) before surgery and after four and five months of rehabilitation.  After 4 and 5 months of rehabilitation we found significantly lower values in injured knees compared to the preoperative data. Our study has shown that in injured knee active angle reproduction errors after 4 and 5 months of rehabilitation were higher compared with the ones of the uninjured knee. Proprioceptive ability on the both legs was  independent of all differences angles for target and starting position for movement. The knee joint position sense on both legs depends upon the rate of two different angular velocities and the mean active angle reproduction errors at the test of angular velocity slow speed was the highest compared with the fast angular velocity. Discussion and conclusions. In conclusion, our study shows that there was improvement in mean JPS 4 and 5 months after ACL reconstruction, but it did not return to normal indices.Keywords: knee joint, joint position sense, angular velocity, starting position for movement.


2015 ◽  
Vol 11 (1) ◽  
pp. 2960-2971
Author(s):  
M.Abdel Wahab

The Numerical study of the flow of a fluid in the annular region between two eccentric sphere susing PHP Code isinvestigated. This flow is created by considering the inner sphere to rotate with angular velocity 1  and the outer sphererotate with angular velocity 2  about the axis passing through their centers, the z-axis, using the three dimensionalBispherical coordinates (, ,) .The velocity field of fluid is determined by solving equation of motion using PHP Codeat different cases of angular velocities of inner and outer sphere. Also Finite difference code is used to calculate surfacetractions at outer sphere.


2002 ◽  
Vol 69 (5) ◽  
pp. 602-609 ◽  
Author(s):  
A. S. Wineman ◽  
J. A. Shaw

When an elastomeric material is subject to sufficiently high temperature, macromolecular network junctions can undergo time-dependent scission and re-crosslinking (healing). The material system then consists of molecular networks with different reference states. A constitutive framework, based on the experimental work of Tobolsky, is used to determine the evolution of deformation of a solid rubber cylinder spinning at constant angular velocity at an elevated temperature. Responses based on underlying neo-Hookean, Mooney-Rivlin, and Arruda-Boyce models, were solved numerically and compared. Different amounts of healing were studied for each case. For neo-Hookean molecular networks, there may be a critical finite time when the radius grows infinitely fast and the cylinder “blows up.” This time depends on the angular velocity and the rate of re-cross linking. In addition, no solution was possible for angular velocities above a critical value, even without the effects of scission. Such anomalous behavior does not occur for Mooney-Rivlin or Arruda-Boyce network response.


2008 ◽  
Vol 24 (3) ◽  
pp. 280-287 ◽  
Author(s):  
Yong “Tai” Wang ◽  
Konstantinos Dino Vrongistinos ◽  
Dali Xu

The purposes of this study were to examine the consistency of wheelchair athletes’ upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.


2012 ◽  
Vol 6 (1) ◽  
pp. 53-60
Author(s):  
Tomáš Malý ◽  
František Zahálka ◽  
Lucia Malá ◽  
Jaroslav Teplan

Th e aim of the study was to present isokinetic strength profi le of knee fl exors and extensors during concentric contraction in young soccer players. Particularly in knee fl exors was evaluated also strength during eccentric contraction. Research group was state from young soccer players U17 category (n=19, age=16,4±0,3 years). All of them are the participant of highest junior soccer league. Isokinetic strength was evaluated by isokinetic dynamometr Cybex Humac Norm in following angular velocities: 30, 60 and 120°/s in eccentric contraction and 60, 180, 240 and 300 °/s in concentric contraction. Th e results did not revealed signifi cant diff erences at three diff erent speed levels of knee fl exors’ strength during eccentric contraction (p>0,05). Regarding the concentric contraction we found signifi cant diff erences for strength production depending on angular velocity for both knee extensors and fl exors (p<0,01). Knee fl exors generated more strength during eccentric contraction compared to concentric contraction. Th e strength profi les developed in the present study can assist in the establishment of baseline data in young soccer players or for comparison values with other researchers.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1519
Author(s):  
Robert E. Criss ◽  
Anne M. Hofmeister

Empirical laws proposed for the decline in star spin with time have heretofore been tested using ambiguous fitting models. We develop an analytical inverse model that uses histogram data to unequivocally determine the physical law governing how dwarf star spin depends on time (t) and mass (M). We analyze shapes of paired histograms of axial rotation period (П) and angular velocity (ω = 2π/П) to utilize the fact that a variable and its reciprocal are governed by the same physics. Copious data on open clusters are used to test the formula ∂ω/∂t ∝ − ωn where n is unrestricted, and thus covers diverse possibilities. Histogram conjugates for each of 15 clusters with 120 to 812 measurements provide n = 1.13 ± 0.19. Results are independent of initial spin rate, bin size, cluster parameters, and star mass. Notably, 11 large clusters with mostly M-types yield fits with n = 1.07 ± 0.12. Associations behave similarly. Only exponential decay (n = 1) explains the similar shapes of the conjugate histograms for the spin period and angular velocity, despite the asymmetric (inverse) relationship of these variables. This rate law is consistent with viscous dissipation. Forward modeling confirms that n is near unity and further shows that coeval formation of all stars in a cluster does not occur. We therefore explore a constant rate of star production, which is reasonable for tiny stars. Inverse models show that episodic production increases with mass, but is unimportant below ~0.55 MSun. We infer star and cluster ages, and find that star production becomes less regular with time, as interstellar gas and dust are progressively depleted. Our new analytical approach of extracting a physical law from conjugate histograms is general and widely applicable.


Author(s):  
Gabriel G. Zimmermann ◽  
Samir P. Jasper ◽  
Daniel Savi ◽  
Leonardo L. Kmiecik ◽  
Lauro Strapasson Neto ◽  
...  

ABSTRACT The establishment of grain crops in Brazil is an important industrial process in the agricultural chain, requiring the correct deposition of granular fertilizer over the sowing furrow and more efficient, precise, and sustainable assessments in the operation, which can be achieved with the statistical process control. This study aimed to assess the effect of the angular velocity on different inclinations of the helical metering mechanism on the granular fertilizer deposition. An automated electronic bench was used to assess the deposition quality of granular fertilizers considering different angular velocities (1.11, 1.94, and 2.77 m s-1) and longitudinal and transverse inclinations (+15, +7.5, 0, −7.5, and −15°), with the helical doser by overflow. Flow data were collected and submitted to descriptive statistics and statistical process control. The metering mechanism showed expected variations, with acceptable performance under process control. The values of the flow rates of the granular fertilizer increased as velocity increased, standing out longitudinal inclinations of +7.5 and +15°, providing higher fertilizer depositions.


Sign in / Sign up

Export Citation Format

Share Document