Omicron sparks a vaccine strategy debate

Science ◽  
2021 ◽  
Vol 374 (6575) ◽  
pp. 1544-1545
Author(s):  
Jon Cohen
Keyword(s):  
2019 ◽  
Author(s):  
Jia Liu ◽  
Zhe Wang ◽  
Dingyong Sun ◽  
Xiying Wang

UNSTRUCTURED The HIV epidemic imposes a heavy burden on societal development. Presently, the protection of susceptible populations is the most feasible method for eliminating the spread of HIV. Governments and other relevant industries are actively attempting to solve the problem. In view of the unavailability of biological vaccines, the best measures that can currently be applied are identification of HIV-infected persons and provision of treatment and behavioral intervention. This paper proposes a HIV digital vaccine strategy based on blockchain technology. In the proposed strategy, a decentralized surveillance network is jointly constructed using HIV high-risk individuals as application nodes and accredited testing agencies as authentication nodes. Following testing at the authentication nodes, the results are uploaded to the blockchain, which results in HIV high-risk individuals being able to determine the HIV infection status of each other in a convenient, anonymous, and credible manner. This reduces the occurrence of high-risk sexual behavior and effectively protects susceptible populations. The proposed strategy is a promising solution to prevent the spread of HIV. The performance of the decentralized surveillance network may lead to the restructuring of current government-funded infectious disease prevention and control modes that are centered on centers for disease control and prevention and hospitals to introduce revolutionary changes in public health systems globally.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Linling He ◽  
Anshul Chaudhary ◽  
Xiaohe Lin ◽  
Cindy Sou ◽  
Tanwee Alkutkar ◽  
...  

AbstractEbola virus (EBOV) glycoprotein (GP) can be recognized by neutralizing antibodies (NAbs) and is the main target for vaccine design. Here, we first investigate the contribution of the stalk and heptad repeat 1-C (HR1C) regions to GP metastability. Specific stalk and HR1C modifications in a mucin-deleted form (GPΔmuc) increase trimer yield, whereas alterations of HR1C exert a more complex effect on thermostability. Crystal structures are determined to validate two rationally designed GPΔmuc trimers in their unliganded state. We then display a modified GPΔmuc trimer on reengineered protein nanoparticles that encapsulate a layer of locking domains (LD) and a cluster of helper T-cell epitopes. In mice and rabbits, GP trimers and nanoparticles elicit cross-ebolavirus NAbs, as well as non-NAbs that enhance pseudovirus infection. Repertoire sequencing reveals quantitative profiles of vaccine-induced B-cell responses. This study demonstrates a promising vaccine strategy for filoviruses, such as EBOV, based on GP stabilization and nanoparticle display.


2020 ◽  
Vol 5 ◽  
pp. 100026 ◽  
Author(s):  
Henry Ji ◽  
Ying Yan ◽  
Beibei Ding ◽  
Wenzhong Guo ◽  
Mark Brunswick ◽  
...  
Keyword(s):  

Vaccine ◽  
1988 ◽  
Vol 6 (4) ◽  
pp. 304-306 ◽  
Author(s):  
S.M. Kingsman ◽  
A.J. Kingsman

2014 ◽  
Vol 16 (suppl 5) ◽  
pp. v111-v111
Author(s):  
M. Dey ◽  
A. Chang ◽  
D. Wainwright ◽  
A. Ahmed ◽  
Y. Han ◽  
...  

2003 ◽  
Vol 71 (12) ◽  
pp. 6995-7001 ◽  
Author(s):  
Rhoel R. Dinglasan ◽  
Iesha Fields ◽  
Mohammed Shahabuddin ◽  
Abdu F. Azad ◽  
John B. Sacci

ABSTRACT In spite of research efforts to develop vaccines against the causative agent of human malaria, Plasmodium falciparum, effective control remains elusive. The predominant vaccine strategy focuses on targeting parasite blood stages in the vertebrate host. An alternative approach has been the development of transmission-blocking vaccines (TBVs). TBVs target antigens on parasite sexual stages that persist within the insect vector, anopheline mosquitoes, or target mosquito midgut proteins that are presumed to mediate parasite development. By blocking parasite development within the insect vector, TBVs effectively disrupt transmission and the resultant cascade of secondary infections. Using a mosquito midgut-specific mouse monoclonal antibody (MG96), we have partially characterized membrane-bound midgut glycoproteins in Anopheles gambiae and Anopheles stephensi. These proteins are present on the microvilli of midgut epithelial cells in both blood-fed and unfed mosquitoes, suggesting that the expression of the protein is not induced as a result of blood feeding. MG96 exhibits a dose-dependent blocking effect against Plasmodium yoelii development in An. stephensi. We achieved 100% blocking of parasite development in the mosquito midgut. Preliminary deglycosylation assays indicate that the epitope recognized by MG96 is a complex oligosaccharide. Future investigation of the carbohydrate epitope as well as gene identification should provide valuable insight into the possible mechanisms of ookinete attachment and invasion of mosquito midgut epithelial cells.


PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0152952 ◽  
Author(s):  
Edouard Lhomme ◽  
Laura Richert ◽  
Zoe Moodie ◽  
Chloé Pasin ◽  
Spyros A. Kalams ◽  
...  

Blood ◽  
2021 ◽  
Author(s):  
Muzaffar H Qazilbash ◽  
Neeraj Y Saini ◽  
Cha Soung-chul ◽  
Zhe Wang ◽  
Edward Stadtmauer ◽  
...  

We hypothesized that combining adoptively transferred autologous T cells with a cancer vaccine strategy would enhance therapeutic efficacy by adding anti-myeloma idiotype-keyhole limpet hemocyanin (Id-KLH) vaccine to vaccine-specific co-stimulated T cells. In this randomized, phase II trial, eligible patients received either the control (KLH only) or Id-KLH vaccine, an auto-transplant, vaccine-specific co-stimulated T-cells expanded ex-vivo, and two booster doses of the assigned vaccine. In 36 patients (20 in KLH, 16 in Id-KLH) enrolled, no dose-limiting toxicity was seen in either arm. At last evaluation, 6 (30%) and 8 (50%) had achieved complete remission in KLH-only and Id-KLH, respectively (p=0.22) and no difference in 3-year progression-free survival was observed (59% and 56%, respectively; p=0.32). In a 594 Nanostring nCounter gene panel analyzed for immune reconstitution (IR), compared with KLH-only patients, there was a greater change in IR genes in T-cells in Id-KLH patients relative to baseline. Specifically, upregulation of genes associated with activation, induction of effector function, and generation of memory CD8+ T cells after Id-KLH, but not after KLH control vaccination, was observed. Similarly, responding patients across both arms were associated with upregulation of genes associated with T-cell activation. At baseline, all patients had greater expression of CD8+ T-cell exhaustion markers. These changes were associated with functional Id-specific immune responses in a subset of Id-KLH patients analyzed. In conclusion, in this combination immunotherapy approach, we observed a significantly more robust IR in CD4+ and CD8+ T cells in the Id-KLH arm, supporting further investigation of vaccine and adoptive immunotherapy strategies.


2013 ◽  
Vol 58 (4) ◽  
Author(s):  
Gandhirajan Anugraha ◽  
Parasurama Jeyaprita ◽  
Jayaprakasam Madhumathi ◽  
Tamilvanan Sheeba ◽  
Perumal Kaliraj

AbstractAlthough multiple vaccine strategy for lymphatic filariasis has provided tremendous hope, the choice of antigens used in combination has determined its success in the previous studies. Multiple antigens comprising key vaccine candidates from different life cycle stages would provide a promising strategy if the antigenic combination is chosen by careful screening. In order to analyze one such combination, we have used a chimeric construct carrying the well studied B. malayi antigens thioredoxin (BmTRX) and venom allergen homologue (BmVAH) as a fusion protein (TV) and evaluated its immune responses in mice model. The efficacy of fusion protein vaccine was explored in comparison with the single antigen vaccines and their cocktail. In mice, TV induced significantly high antibody titer of 1,28,000 compared to cocktail vaccine TRX+VAH (50,000) and single antigen vaccine TRX (16,000) or VAH (50,000). Furthermore, TV elicited higher level of cellular proliferative response together with elevated levels of IFN-γ, IL-4 and IL-5 indicating a Th1/Th2 balanced response. The isotype antibody profile showed significantly high level of IgG1 and IgG2b confirming the balanced response elicited by TV. Immunization with TV antigen induced high levels of both humoral and cellular immune responses compared to either cocktail or antigen given alone. The result suggests that TV is highly immunogenic in mice and hence the combination needs to be evaluated for its prophylactic potential.


Sign in / Sign up

Export Citation Format

Share Document