scholarly journals Agonist-antagonist myoneural interface amputation preserves proprioceptive sensorimotor neurophysiology in lower limbs

2020 ◽  
Vol 12 (573) ◽  
pp. eabc5926
Author(s):  
Shriya S. Srinivasan ◽  
Greta Tuckute ◽  
Jasmine Zou ◽  
Samantha Gutierrez-Arango ◽  
Hyungeun Song ◽  
...  

The brain undergoes marked changes in function and functional connectivity after limb amputation. The agonist-antagonist myoneural interface (AMI) amputation is a procedure that restores physiological agonist-antagonist muscle relationships responsible for proprioceptive sensory feedback to enable greater motor control. We compared results from the functional neuroimaging of individuals (n = 29) with AMI amputation, traditional amputation, and no amputation. Individuals with traditional amputation demonstrated a significant decrease in proprioceptive activity, measured by activation of Brodmann area 3a, whereas functional activation in individuals with AMIs was not significantly different from controls with no amputation (P < 0.05). The degree of proprioceptive activity in the brain strongly correlated with fascicle activity in the peripheral muscles and performance on motor tasks (P < 0.05), supporting the mechanistic basis of the AMI procedure. These results suggest that surgical techniques designed to restore proprioceptive peripheral neuromuscular constructs result in desirable central sensorimotor plasticity.

Author(s):  
Hugues Duffau

Investigating the neural and physiological basis of language is one of the most important challenges in neurosciences. Direct electrical stimulation (DES), usually performed in awake patients during surgery for cerebral lesions, is a reliable tool for detecting both cortical and subcortical (white matter and deep grey nuclei) regions crucial for cognitive functions, especially language. DES transiently interacts locally with a small cortical or axonal site, but also nonlocally, as the focal perturbation will disrupt the entire subnetwork sustaining a given function. Thus, in contrast to functional neuroimaging, DES represents a unique opportunity to identify with great accuracy and reproducibility, in vivo in humans, the structures that are actually indispensable to the function, by inducing a transient virtual lesion based on the inhibition of a subcircuit lasting a few seconds. Currently, this is the sole technique that is able to directly investigate the functional role of white matter tracts in humans. Thus, combining transient disturbances elicited by DES with the anatomical data provided by pre- and postoperative MRI enables to achieve reliable anatomo-functional correlations, supporting a network organization of the brain, and leading to the reappraisal of models of language representation. Finally, combining serial peri-operative functional neuroimaging and online intraoperative DES allows the study of mechanisms underlying neuroplasticity. This chapter critically reviews the basic principles of DES, its advantages and limitations, and what DES can reveal about the neural foundations of language, that is, the large-scale distribution of language areas in the brain, their connectivity, and their ability to reorganize.


2021 ◽  
Vol 10 (7) ◽  
pp. 1413
Author(s):  
Judith Catella ◽  
Anne Long ◽  
Lucia Mazzolai

Some patients still require major amputation for lower extremity peripheral arterial disease treatment. The purpose of pre-operative amputation level selection is to determine the most distal amputation site with the highest healing probability without re-amputation. Transcutaneous oximetry (TcPO2) can detect viable tissue with the highest probability of healing. Several factors affect the accuracy of TcPO2; nevertheless, surgeons rely on TcPO2 values to determine the optimal amputation level. Background about the development of TcPO2, methods of measurement, consequences of lower limb amputation level, and the place of TcPO2 in the choice of the amputation level are reviewed herein. Most of the retrospective studies indicated that calf TcPO2 values greater than 40 mmHg were associated with a high percentage of successful wound healing after below-knee-amputation, whereas values lower than 20 mmHg indicated an increased risk of unsuccessful healing. However, a consensus on the precise cut-off value of TcPO2 necessary to assure healing is missing. Ways of improvement for TcPO2 performance applied to the optimization of the amputation-level are reported herein. Further prospective data are needed to better approach a TcPO2 value that will promise an acceptable risk of re-amputation. Standardized TcPO2 measurement is crucial to ensure quality of data.


Author(s):  
Mark A Thornton ◽  
Diana I Tamir

Abstract The social world buzzes with action. People constantly walk, talk, eat, work, play, snooze and so on. To interact with others successfully, we need to both understand their current actions and predict their future actions. Here we used functional neuroimaging to test the hypothesis that people do both at the same time: when the brain perceives an action, it simultaneously encodes likely future actions. Specifically, we hypothesized that the brain represents perceived actions using a map that encodes which actions will occur next: the six-dimensional Abstraction, Creation, Tradition, Food(-relevance), Animacy and Spiritualism Taxonomy (ACT-FAST) action space. Within this space, the closer two actions are, the more likely they are to precede or follow each other. To test this hypothesis, participants watched a video featuring naturalistic sequences of actions while undergoing functional magnetic resonance imaging (fMRI) scanning. We first use a decoding model to demonstrate that the brain uses ACT-FAST to represent current actions. We then successfully predicted as-yet unseen actions, up to three actions into the future, based on their proximity to the current action’s coordinates in ACT-FAST space. This finding suggests that the brain represents actions using a six-dimensional action space that gives people an automatic glimpse of future actions.


2018 ◽  
Vol 48 (1) ◽  
pp. 150-159
Author(s):  
Jonathan M. P. Wilbiks ◽  
Sean Hutchins

In previous research, there exists some debate about the effects of musical training on memory for verbal material. The current research examines this relationship, while also considering musical training effects on memory for musical excerpts. Twenty individuals with musical training were tested and their results were compared to 20 age-matched individuals with no musical experience. Musically trained individuals demonstrated a higher level of memory for classical musical excerpts, with no significant differences for popular musical excerpts or for words. These findings are in support of previous research showing that while music and words overlap in terms of their processing in the brain, there is not necessarily a facilitative effect between training in one domain and performance in the other.


2012 ◽  
Vol 23 (12) ◽  
pp. 1455-1460 ◽  
Author(s):  
Lisa Legault ◽  
Timour Al-Khindi ◽  
Michael Inzlicht

Self-affirmation produces large effects: Even a simple reminder of one’s core values reduces defensiveness against threatening information. But how, exactly, does self-affirmation work? We explored this question by examining the impact of self-affirmation on neurophysiological responses to threatening events. We hypothesized that because self-affirmation increases openness to threat and enhances approachability of unfavorable feedback, it should augment attention and emotional receptivity to performance errors. We further hypothesized that this augmentation could be assessed directly, at the level of the brain. We measured self-affirmed and nonaffirmed participants’ electrophysiological responses to making errors on a task. As we anticipated, self-affirmation elicited greater error responsiveness than did nonaffirmation, as indexed by the error-related negativity, a neural signal of error monitoring. Self-affirmed participants also performed better on the task than did nonaffirmed participants. We offer novel brain evidence that self-affirmation increases openness to threat and discuss the role of error detection in the link between self-affirmation and performance.


Neurosurgery ◽  
2003 ◽  
Vol 53 (2) ◽  
pp. 387-392 ◽  
Author(s):  
Michael B. Horowitz ◽  
Kamal Ramzipoor ◽  
Ajit Nair ◽  
Susan Miller ◽  
George Rappard ◽  
...  

Abstract OBJECTIVE Endoscopic third ventriculostomy has developed into a therapeutic alternative to shunting for the management of carefully selected patients with primarily noncommunicating hydrocephalus. This procedure, however, requires a general anesthetic and necessitates violation of the brain parenchyma and manipulation near vital neural structures to access the floor of the third ventricle. Using two cadavers and off-the-shelf angiographic catheters, we sought to determine whether it was possible to navigate a catheter, angioplasty balloon, and stent percutaneously through the subarachnoid space from the thecal sac into the third ventricle so as to perform a third ventriculostomy from below. METHODS Using biplane angiography and off-the-shelf angiographic catheters along with angioplasty balloons and stents, we were able to pass a stent coaxially from the thecal sac to and across the floor of the third ventricle so as to achieve a third ventriculostomy from below. RESULTS Coaxial catheter techniques allowed for the percutaneous insertion of a stent across the floor of the third ventricle. Ventriculostomy was confirmed by injecting contrast medium into the lateral ventricle and seeing it pass through the stent and into the chiasmatic cistern. CONCLUSION We describe the performance of third ventriculostomies in two cadavers by use of the new concept of percutaneous intradural neuronavigation. This procedure may obviate the need for general anesthetic and minimize the potential for brain and vascular injury, especially if ultimately combined with magnetic resonance fluoroscopy.


2014 ◽  
Vol 100 (3) ◽  
pp. 337-343
Author(s):  
MA Osborne ◽  
HL Jarvis ◽  
N Bennett ◽  
RD Phillip

Abstract‘Deck-Slap’ is an injury pattern first described at the Battle of Jutland; it is still relevant today, with anti-vehicle mines a significant threat to Coalition troops. The effect of a device exploding beneath a vehicle produces a wave of high energy that is rapidly transmitted through the steel floor; this causes significant axial loading of lower limbs often resulting in severe fractures (notably of the calcaneum). Recent advancements in orthopaedic surgery have allowed for limbs that were destined for immediate amputation following significant trauma to be salvaged. However, despite intense rehabilitation, many of these salvaged limbs have subsequently gone on to delayed amputation, as functional outcomes are often poor. Technologically advanced prosthetic devices are available that afford good quality of life and allow for increased activity levels; these devices are, however, expensive to procure and maintain. This report describes a United Kingdom (UK) Armed Forces soldier who suffered a typical ‘deck-slap’ injury in Afghanistan with subsequent limb salvage. The use of the Bespoke Off-loading Brace (BOB) is discussed. The results presented here indicate that the biomechanical function of a patient with this type of injury improves when wearing the BOB. Further studies are needed to assess long-term clinical outcomes and the functional benefit of the device as a viable and cost-effective alternative to delayed limb amputation.


2021 ◽  
pp. 1-11
Author(s):  
Najmeh Pakniyat ◽  
Mohammad Hossein Babini ◽  
Vladimir V. Kulish ◽  
Hamidreza Namazi

BACKGROUND: Analysis of the heart activity is one of the important areas of research in biomedical science and engineering. For this purpose, scientists analyze the activity of the heart in various conditions. Since the brain controls the heart’s activity, a relationship should exist among their activities. OBJECTIVE: In this research, for the first time the coupling between heart and brain activities was analyzed by information-based analysis. METHODS: Considering Shannon entropy as the indicator of the information of a system, we recorded electroencephalogram (EEG) and electrocardiogram (ECG) signals of 13 participants (7 M, 6 F, 18–22 years old) in different external stimulations (using pineapple, banana, vanilla, and lemon flavors as olfactory stimuli) and evaluated how the information of EEG signals and R-R time series (as heart rate variability (HRV)) are linked. RESULTS: The results indicate that the changes in the information of the R-R time series and EEG signals are strongly correlated (ρ=-0.9566). CONCLUSION: We conclude that heart and brain activities are related.


2021 ◽  
Vol 2 (3) ◽  
pp. 146-158
Author(s):  
Nikolay N. Zavadenko

Dyslexia is the most common form of specific learning disabilities. Dyslexia is observed in 5-17.5 % of schoolchildren, and among children with specific learning disabilities, it accounts for about 70-80 %. Usually, dyslexia manifests itself as the inability to achieve an appropriate level of reading skills development that would be proportional to their intellectual abilities and writing and spelling skills. Secondary consequences of dyslexia may include problems in reading comprehension and reduced reading experience that can impede the growth of vocabulary and background skills. The review discusses neurological management of reading and writing as complex higher mental functions, including many components that are provided by various brain areas. The principles of dyslexia classification, the main characteristics of its traditionally defined forms are given: phonemic, optical, mnestic, semantic, agrammatic. The article analyzes the cerebral mechanisms of dyslexia development, the results of studies using neuropsychological methods, functional neuroimaging, and the study of the brain connectome. The contribution to dyslexia development of disturbances in phonological awareness, rapid automated naming (RAN), the volume of visual attention (VAS), components of the brain executive functions is discussed. The origin of emotional disorders in children with dyslexia, risk factors for dyslexia development (including genetic predisposition) are considered. Dyslexia manifestations in children are listed, about which their parents seek the advice of a specialist for the first time. In the process of diagnosing dyslexia, attention should be paid to the delay in the child’s speech development, cases of speech and language development disorders and specific learning disabilities among family members. It is necessary to consider possible comorbidity of dyslexia in a child with attention deficit hyperactivity disorder, dyscalculia, developmental dyspraxia, disorders of emotional control and brain executive functions. Timely diagnosis determines the effectiveness of early intervention programs based on an integrated multimodal approach.


Sign in / Sign up

Export Citation Format

Share Document