scholarly journals Population Pharmacokinetics of Levofloxacin, Gatifloxacin, and Moxifloxacin in Adults with Pulmonary Tuberculosis

2007 ◽  
Vol 52 (3) ◽  
pp. 852-857 ◽  
Author(s):  
Charles A. Peloquin ◽  
David Jamil Hadad ◽  
Lucilia Pereira Dutra Molino ◽  
Moises Palaci ◽  
W. Henry Boom ◽  
...  

ABSTRACT The objective of this study was to determine the population pharmacokinetic parameters of levofloxacin, gatifloxacin, and moxifloxacin following multiple oral doses. Twenty-nine patients with tuberculosis at the University Hospital in Vitória, Brazil, participated. Subjects received multiple doses of one drug (levofloxacin, 1,000 mg daily, or gatifloxacin or moxifloxacin, 400 mg daily) as part of a 7-day study of early bactericidal activity. Serum samples were collected over 24 h after the fifth dose and assayed using validated high-performance liquid chromatography assays. Concentration-time data were analyzed using noncompartmental, compartmental, and population methods. The three drugs were well tolerated. Levofloxacin produced the highest maximum plasma concentrations (median, 15.55 μg/ml; gatifloxacin, 4.75 μg/ml; moxifloxacin, 6.13 μg/ml), largest volume of distribution (median, 81 liters; gatifloxacin, 79 liters; moxifloxacin, 63 liters), and longest elimination half-life (median, 7.4 h; gatifloxacin, 5.0 h; moxifloxacin, 6.5 h). A one-compartment model, with or without weight as a covariate, adequately described the data. Postmodeling simulations using median population parameter estimates closely approximated the median values from the original data. Area under the concentration-time curve/MIC ratios for free drug were high. All three quinolones showed favorable pharmacokinetic and pharmacodynamic indices, with the most favorable results in this population being seen with levofloxacin at the comparative doses used.

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S670-S671
Author(s):  
Ronald G Hall ◽  
Jotam Pasipanodya ◽  
William C Putnam ◽  
John Griswold ◽  
Sharmila Dissanaike ◽  
...  

Abstract Background Antimicrobial dosing in moderate/severe burns patients is complicated due to the potential unpredictable hyperdynamic pathophysiologic states including 1) hypoproteinemia, 2) acute kidney injury and 3) onset of septicemia. Therefore, distribution assumptions about the population pharmacokinetic (PopPK) profiles of either endogenous or xenobiotic pharmacophores in this patient population can lead to biased parameter estimates. In order to prevent potential bias an agnostic nonparametric adaptive grid approach to describe ceftolozane/tazobactam (C/T) PopPK profiles in patients with partial- and full-thickness burns was employed. Methods A human clinical PK study in burn patients was conducted using the standard approved dose of C/T (2 grams/1 gram). A single intravenous dose was administered over 60 minutes. Whole blood was obtained pre-dose and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12, 16, and 24 hours following the start of infusion. LC-MS/MS bioanalytical methods were developed, validated and employed to determine C/T concentrations in human plasma. PopPK were modeled using Pmetrics package for R. One-, two- and three-compartment models were examined and compared. The influence of several parameters, including %body surface area burns, creatinine clearance (CrCL), weight, albumin and age were tested. Results The bioanalytical method for determination of C/T in human plasma met all recommended criteria of the LC-MS/MS. Five males and one female (ages 24 to 66 years), contributed 148 plasma PK samples. The female had 35% partial-thickness burns. The males had full-thickness burns ranging from 27 to 66%. The median CrCL was 104 mL/min (range 73-148 mL/min). Two-compartment model with absorption (Ka) from compartment 1 to 2 and elimination from compartment 2 (Ke), with nonlinear interactions between C/T elimination and CrCL best described the data. Figure A show that bias was minimal. Importantly, both drugs exhibited marked variability for both volume and elimination (Table), since volume was bimodally distributed (Figure B). A) Observation-versus-Prediction; B) Estimated Ke, V and Ka population parameter densities Summary of pharmacokinetic parameters Conclusion C/T exhibited high variability surpassing that observed with severe infections, suggesting that dose adjustment and/or may be therapeutic drug monitoring may be needed to balance target attainment from dose-related toxicities. Disclosures Ronald G. Hall, II, PharmD, MSCS, Medical Titan Group (Grant/Research Support)Merck (Research Grant or Support)


2015 ◽  
Vol 10 (9) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Rosario Russo ◽  
Angelo Mancinelli ◽  
Michele Ciccone ◽  
Fabio Terruzzi ◽  
Claudio Pisano ◽  
...  

Diosmin is a naturally occurring flavonoid present in citrus fruits and other plants belonging to the Rutaceae family. It is used for the treatment of chronic venous insufficiency (CVI) for its pheblotonic and vaso-active properties, safety and tolerability as well. The aim of the current in vivo study was to investigate the pharmacokinetic profile of a branded micronized diosmin (μSMIN Plus™) compared with plain micronized diosmin in male Sprague-Dawley rats. After oral administration by gastric gavage, blood samples were collected via jugular vein catheters at regular time intervals from baseline up to 24 hours. Plasma concentrations were assessed by LC/MS. For each animal, the following pharmacokinetic parameters were calculated using a non-compartmental analysis: maximum plasma drug concentration (Cmax), time to reach Cmax (Tmax), area under the plasma concentration-time curve (AUC0-last), elimination half-life (t1/2), and relative oral bioavailability (%F). The results of the current study clearly showed an improvement in the pharmacokinetic parameters in animals treated with μSMIN Plus™ compared with animals treated with micronized diosmin. In particular, μSMIN Plus™ showed a 4-fold increased bioavailability compared with micronized diosmin. In conclusion, the results from the current study provided a preliminary pharmacokinetic profile for μSMIN Plus™, which may represent a new tool for CVI management.


2012 ◽  
Vol 116 (5) ◽  
pp. 1124-1133 ◽  
Author(s):  
Bruce Hullett ◽  
Sam Salman ◽  
Sean J. O'Halloran ◽  
Deborah Peirce ◽  
Kylie Davies ◽  
...  

Background Parecoxib is a cyclooxygenase-2 selective inhibitor used in management of postoperative pain in adults. This study aimed to provide pediatric pharmacokinetic information for parecoxib and its active metabolite valdecoxib. Methods Thirty-eight children undergoing surgery received parecoxib (1 mg/kg IV to a maximum of 40 mg) at induction of anesthesia, and plasma samples were collected for drug measurement. Population pharmacokinetic parameters were estimated using nonlinear mixed effects modeling. Area under the valdecoxib concentration-time curve and time above cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib were simulated. Results A three-compartment model best represented parecoxib disposition, whereas one compartment was adequate for valdecoxib. Age was linearly correlated with parecoxib clearance (5.0% increase/yr). There was a sigmoid relationship between age and both valdecoxib clearance and distribution volume. Time to 50% maturation was 87 weeks postmenstrual age for both. In simulations using allometric-based doses the 90% prediction interval of valdecoxib concentration-time curve in children 2-12.7 yr included the mean for adults given 40 mg parecoxib IV. Simulated free valdecoxib plasma concentration remained above the in vitro 50% inhibitory concentrations for more than 12 h. In children younger than 2 yr, a dose reduction is likely required due to ongoing metabolic maturation. Conclusions The final pharmacokinetic model gave a robust representation of parecoxib and valdecoxib disposition. Area under the valdecoxib concentration-time curve was similar to that in adults (40 mg), and simulated free valdecoxib concentration was above the cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib for at least 12 h.


2009 ◽  
Vol 53 (10) ◽  
pp. 4407-4413 ◽  
Author(s):  
Déborah Hirt ◽  
Saik Urien ◽  
Mathieu Olivier ◽  
Hélène Peyrière ◽  
Boubacar Nacro ◽  
...  

ABSTRACT We aimed in this study to describe efavirenz concentration-time courses in treatment-naïve children after once-daily administration to study the effects of age and body weight on efavirenz pharmacokinetics and to test relationships between doses, plasma concentrations, and efficacy. For this purpose, efavirenz concentrations in 48 children were measured after 2 weeks of didanosine-lamivudine-efavirenz treatment, and samples were available for 9/48 children between months 2 and 5 of treatment. Efavirenz concentrations in 200 plasma specimens were measured using a validated high-performance liquid chromatography method. A population pharmacokinetic model was developed with NONMEM. The influence of individual characteristics was tested using a likelihood ratio test. The estimated minimal and maximal concentrations of efavirenz in plasma (C min and C max, respectively) and the area under the concentration-time curve (AUC) were correlated to the decrease in human immunodeficiency virus type 1 RNA levels after 3 months of treatment. The threshold C min (and AUC) that improved efficacy was determined. The target minimal concentration of 4 mg/liter was considered for toxicity. An optimized dosing schedule that would place the highest percentage of children in the interval of effective and nontoxic concentrations was simulated. The pharmacokinetics of efavirenz was best described by a one-compartment model with first-order absorption and elimination. The mean apparent clearance and volume of distribution for efavirenz were 0.211 liter/h/kg and 4.48 liters/kg, respectively. Clearance decreased significantly with age. When the recommended doses were given to 46 of the 48 children, 19% (44% of children weighing less than 15 kg) had C mins below 1 mg/liter. A significantly higher percentage of children with C mins of >1.1 mg/liter or AUCs of >51 mg/liter·h than of children with lower values had viral load decreases greater than 2 log10 copies/ml after 3 months of treatment. Therefore, to optimize the percentage of children with C mins between 1.1 and 4 mg/liter, children should receive the following once-daily efavirenz doses: 25 mg/kg of body weight from 2 to 6 years, 15 mg/kg from 6 to 10 years, and 10 mg/kg from 10 to 15 years. These assumptions should be prospectively confirmed.


2021 ◽  
Vol 7 ◽  
Author(s):  
Salah Uddin Ahmad ◽  
Jichao Sun ◽  
Fusheng Cheng ◽  
Bing Li ◽  
Safia Arbab ◽  
...  

A comparative study on pharmacokinetics of four long-acting enrofloxacin injectable formulations was investigated in 36 healthy pigs after intramuscular injection according to the recommended single dose @ 2.5 mg/kg body weight. The drug concentrations in the plasma were computed using high-performance liquid chromatography (HPLC) with fluorescence detection. WinNonLin5.2.1 software was used to analyze the experimental data and compared it under one-way ANOVA using SPSS software with a 95% confidence interval (CI). The main pharmacokinetic parameters, that is, the maximum plasma concentrations (Cmax), the time to maximum concentration (Tmax), area under the time curve concentration (AUCall) and Terminal half-life (T1/2) were 733.84 ± 129.87, 917.00 ± 240.13, 694.84 ± 163.49, 621.98 ± 227.25 ng/ml, 2.19 ± 0.0.66, 1.50 ± 0.37, 2.89 ± 0.24, 0.34 ± 0.13 h, 7754.43 ± 2887.16, 8084.11 ± 1543.98, 7369.42 ± 2334.99, 4194.10 ± 1186.62 ng h/ml, 10.48 ± 2.72, 10.37 ± 2.38, 10.20 ± 2.81, and 10.61 ± 0.86 h for 10% enrofloxacin (Alkali), 20% enrofloxacin (Acidic), Yangkang and control drug Nuokang® respectively. There were significant differences among Cmax, Tmax, and AUCall of three formulations compare with that of the reference formulation. No significant differences were observed among the T1/2 for tested formulations compare with the reference formulation. The pharmacokinetic parameters showed that the tested formulations were somewhat better compared to the reference one. The calculated PK/PD indices were effective for bacteria such as Actinobacillus pleuropneumoniae and Pasteurella multocida with values higher than the cut-off points (Cmax/MIC90≥10–12 and AUC/MIC90 ≥ 125). However, they were not effective against bacteria like Haemophilus parasuis, Streptococcus suis, E. coli, and Bordetella bronchiseptica where lower values were obtained.


2003 ◽  
Vol 47 (2) ◽  
pp. 820-823 ◽  
Author(s):  
Jianzhong Liu ◽  
Ki-Fai Fung ◽  
Zhangliu Chen ◽  
Zhenling Zeng ◽  
Jie Zhang

ABSTRACT A comparative in vivo pharmacokinetic study of florfenicol was conducted in 18 crossbred pigs infected with Actinobacillus pleuropneumoniae following intravenous (i.v.), intramuscular (i.m.), or oral (p.o.) administration of a single dose of 20 mg/kg. The disease model was confirmed by clinical signs, X rays, pathohistologic examinations, and organism isolation. Florfenicol concentrations in plasma were determined by a validated high-performance liquid chromatography method with UV detection at a wavelength of 223 nm. Pharmacokinetic parameters were calculated by using the MCPKP software (Research Institute of Traditional Chinese Veterinary Medicine, Lanzhou, China). The disposition of florfenicol after a single i.v. bolus was described by a two-compartment model with values for the half-life at α phase (t 1/2α), the half-life at β phase (t 1/2β), the area under the concentration-time curve (AUC0-∞), and the volume of distribution at steady state (V ss) of 0.37 h, 2.91 h, 64.86 μg · h/ml, and 1.2 liter/kg, respectively. The concentration-time data fitted the one-compartment (after i.m.) and two-compartment (after p.o.) models with first-order absorption. The values for the maximum concentration of drug in serum (C max), t 1/2α, t 1/2β, and bioavailability after i.m. and p.o. dosing were 4.00 and 8.11 μg/ml, 0.12 and 3.91 h, 13.88 and 16.53 h, and 122.7 and 112.9%, respectively, for the two models. The study showed that florfenicol was absorbed quickly and completely, distributed widely, and eliminated slowly in the infected pigs, and there was no statistically significant difference between the pharmacokinetic profiles for the infected and healthy pigs.


1994 ◽  
Vol 28 (4) ◽  
pp. 444-446
Author(s):  
Lawrence V. Friedrich ◽  
Roger L. White ◽  
Michael B. Kays ◽  
David S. Burgess

OBJECTIVE: To assess the impact of degradation of aztreonam, a beta-lactam antibiotic, during HPLC analysis on pharmacokinetic parameter estimates. METHODS: The baseline (B) serum concentration-time data from a published pharmacokinetic study of aztreonam were degraded using first-order equations and a degradation rate constant (0.014 h-1) determined from a preliminary degradation study. Samples were mathematically degraded for autosampler run times of 8–13 h (D1) to approximate a normal work day and for autosampler run times of 16–17 h (D2) and compared with B data. It was assumed that B data were nondegraded and that changes in chromatography were the result of degradation of azetreonam and not to any changes in chromatographic conditions. A two-compartment model was used to fit the data and pharmacokinetic parameters were calculated using standard equations. Statistical significance between all pharmacokinetic parameters for B and D1 and B and D2 was determined using the paired, two-tailed Student's t-test. RESULTS: Increased variability was noted for all pharmacokinetic parameters for D1 and D2 compared with B. Statistically significant differences were found for clearance (B <D1, p=0.0095 and B <D2, p=0.0194), steady-state volume of distribution (B <D2, p=0.0392), and area under the serum concentration-time curve (B >D1, p=0.0497). CONCLUSIONS: Aztreonam degradation resulted in increased variability in pharmacokinetic parameter estimates. Investigators should be cognizant of this and preliminary studies should be performed to characterize degradation for the length of the expected autosampler run.


1999 ◽  
Vol 43 (3) ◽  
pp. 634-638 ◽  
Author(s):  
Gregory L. Kearns ◽  
Susan M. Abdel-Rahman ◽  
Laura P. James ◽  
Douglas L. Blowey ◽  
James D. Marshall ◽  
...  

ABSTRACT Pleconaril is an orally active, broad-spectrum antipicornaviral agent which demonstrates excellent penetration into the central nervous system, liver, and nasal epithelium. In view of the potential pediatric use of pleconaril, we conducted a single-dose, open-label study to characterize the pharmacokinetics of this antiviral agent in pediatric patients. Following an 8- to 10-h period of fasting, 18 children ranging in age from 2 to 12 years (7.5 ± 3.1 years) received a single 5-mg/kg of body weight oral dose of pleconaril solution administered with a breakfast of age-appropriate composition. Repeated blood samples (n = 10) were obtained over 24 h postdose, and pleconaril was quantified from plasma by gas chromatography. Plasma drug concentration-time data for each subject were fitted to the curve by using a nonlinear, weighted (weight = 1/Y calc) least-squares algorithm, and model-dependent pharmacokinetic parameters were determined from the polyexponential parameter estimates. Pleconaril was well tolerated by all subjects. A one-compartment open-model with first-order absorption best described the plasma pleconaril concentration-time profile in 13 of the subjects over a 24-h postdose period. Pleconaril pharmacokinetic parameters (means ± standard deviations) for these 13 patients were as follows. The maximum concentration of the drug in serum (C max) was 1,272.5 ± 622.1 ng/ml. The time to C max was 4.1 ± 1.5 h, and the lag time was 0.75 ± 0.56 h. The apparent absorption rate constant was 0.75 ± 0.48 1/h, and the elimination rate constant was 0.16 ± 0.07 1/h. The area under the concentration-time curve from 0 to 24 h was 8,131.15 ± 3,411.82 ng · h/ml. The apparent total plasma clearance was 0.81 ± 0.86 liters/h/kg, and the apparent steady-state volume of distribution was 4.68 ± 2.02 liters/kg. The mean elimination half-life of pleconaril was 5.7 h. The mean plasma pleconaril concentrations at both 12 h (250.4 ± 148.2 ng/ml) and 24 h (137.9 ± 92.2 ng/ml) after the single 5-mg/kg oral dose in children were higher than that from in vitro studies reported to inhibit >90% of nonpolio enterovirus serotypes (i.e., 70 ng/ml). Thus, our data support the evaluation of a 5-mg/kg twice-daily oral dose of pleconaril for therapeutic trials in pediatric patients with enteroviral infections.


Pharmacology ◽  
2019 ◽  
Vol 104 (1-2) ◽  
pp. 60-66 ◽  
Author(s):  
Saeed Alqahtani ◽  
Thuraya Alzaidi ◽  
Mashal Alotaibi ◽  
Abdullah Alsultan

Objective: This study aimed to assess the population pharmacokinetics of phenytoin in Saudi patients and identify factors affecting therapeutic parameters. Method: A retrospective chart review was performed at King Saud University Medical City on patients treated with oral phenytoin. We used Monolix 4.4. for population pharmacokinetic modeling. A base model was developed to investigate several covariates, including age, gender, weight, total daily dose (TTD), and liver function test results. Results: The analysis included a total of 81 phenytoin plasma concentrations from 43 patients (70% male). Patients’ mean (± SD) age was 41 (±18.7) years and body weight was 65.4 (±17.7) kg. The patients received a phenytoin TDD of 330.5 (±104.5) mg/day, resulting in a trough concentration of 11.2 (±10.3) mg/L. The data were sufficiently described by the one-compartment open model with linear absorption and nonlinear elimination processes. Average parameter estimates for phenytoin volume of distribution (V), maximal elimination rate (Vmax), and Michaelis-Menten constant (Km) were 0.61 L/h/kg, 6.12 mg/kg/day, and 5.33 mg/L, respectively. The most significant covariates on phenytoin Vmax and Km were the age and body weight of the patients, along with valproic acid (VPA) cotherapy. Conclusion: The population pharmacokinetic model of phenytoin in Saudi patients found significant interindividual variability between subjects, which was affected by the patients’ age, body weight, and VPA cotherapy as the most significant covariates on phenytoin Vmax and Km. To provide guidance in drug dosage decisions, further studies are required to evaluate all factors that may potentially influence the pharmacokinetics of phenytoin.


2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Joseph V. Newman ◽  
Jian Zhou ◽  
Sergey Izmailyan ◽  
Larry Tsai

ABSTRACT Eravacycline is a novel, fully synthetic fluorocycline antibiotic with in vitro activity against aerobic and anaerobic Gram-positive and Gram-negative pathogens, including multidrug-resistant (MDR) bacteria. The pharmacokinetics (PK), urinary excretion, and safety/tolerability of intravenous (i.v.) eravacycline were evaluated in single- and multiple-ascending-dose studies. Healthy subjects received single i.v. doses of 0.1 to 3 mg/kg of body weight or 10 days of treatment with 0.5 or 1.5 mg/kg every 24 h (q24h) over 30 min, 1.5 mg/kg q24h over 60 min, or 1 mg/kg q12h over 60 min. After single doses, total exposure (the area under the plasma concentration-time curve [AUC]) and the maximum plasma concentrations (Cmax) of eravacycline increased in an approximately dose-proportional manner. After multiple doses, steady state was achieved within 5 to 7 days. Accumulation ranged from approximately 7% to 38% with the q24h dosing regimens and was 45% with 1 mg/kg q12h. Eravacycline was generally well tolerated, with dose-related nausea, infusion site effects, and superficial phlebitis that were mild or moderate occurring. These results provide support for the 1-mg/kg q12h regimen used in clinical studies of eravacycline.


Sign in / Sign up

Export Citation Format

Share Document