scholarly journals Fluoroquinolone and Macrolide Exposure Predict Clostridium difficile Infection with the Highly Fluoroquinolone- and Macrolide-Resistant Epidemic C. difficile Strain BI/NAP1/027

2015 ◽  
Vol 60 (1) ◽  
pp. 418-423 ◽  
Author(s):  
Jeffrey T. Wieczorkiewicz ◽  
Bert K. Lopansri ◽  
Adam Cheknis ◽  
James R. Osmolski ◽  
David W. Hecht ◽  
...  

ABSTRACTAntibiotics have been shown to influence the risk of infection with specificClostridium difficilestrains as well as the risk ofC. difficileinfection (CDI). We performed a retrospective case-control study of patients infected with the epidemic BI/NAP1/027 strain in a U.S. hospital following recognition of increased CDI severity and culture of stools positive byC. difficiletoxin immunoassay. Between 2005 and 2007, 72% (103/143) of patients with first-episode CDIs were infected with the BI strain by restriction endonuclease analysis (REA) typing. Most patients received multiple antibiotics within 6 weeks of CDI onset (median of 3 antibiotic classes). By multivariate analysis, fluoroquinolone and macrolide exposure was more frequent among BI cases than among non-BI-infected controls (odds ratio [OR] for fluoroquinolones, 3.2; 95% confidence interval [CI], 1.3 to 7.5; (P< 0.001; OR for macrolides, 5.2; 95% CI, 1.1 to 24.0;P= 0.04)). In contrast, clindamycin use was less frequent among the BI cases than among the controls (OR, 0.1; 95% CI, 0.03 to 0.4;P= 0.001). High-level resistance to moxifloxacin and azithromycin was more frequent among BI strains (moxifloxacin, 49/102 [48%] BI versus 0/40 non-BI,P= 0.0001; azithromycin, 100/102 [98%] BI versus 22/40 [55%] non-BI,P= 0.0001). High-level resistance to clindamycin was more frequent among non-BI strains (22/40 [55%] non-BI versus 7/102 [7%] BI,P= 0.0001). Fluoroquinolone use, macrolide use, andC. difficileresistance to these antibiotic classes were associated with infection by the epidemic BI strain ofC. difficilein a U.S. hospital during a time when CDI rates were increasing nationally due to the highly fluoroquinolone-resistant BI/NAP1/027 strain.

2013 ◽  
Vol 57 (11) ◽  
pp. 5266-5270 ◽  
Author(s):  
Kristin J. Nagaro ◽  
S. Tyler Phillips ◽  
Adam K. Cheknis ◽  
Susan P. Sambol ◽  
Walter E. Zukowski ◽  
...  

ABSTRACTNontoxigenicClostridium difficile(NTCD) has been shown to prevent fatalC. difficileinfection in the hamster model when hamsters are challenged with standard toxigenicC. difficilestrains. The purpose of this study was to determine if NTCD can preventC. difficileinfection in the hamster model when hamsters are challenged with restriction endonuclease analysis group BIC. difficilestrains. Groups of 10 hamsters were given oral clindamycin, followed on day 2 by 106CFU of spores of NTCD strain M3 or T7, and were challenged on day 5 with 100 CFU of spores of BI1 or BI6. To conserve animals, results for control hamsters challenged with BI1 or BI6 from the present study and controls from previous identical experiments were combined for statistical comparisons. NTCD strains M3 and T7 achieved 100% colonization and were 100% protective against challenge with BI1 (P≤ 0.001). M3 colonized 9/10 hamsters and protected against BI6 challenge in the colonized hamsters (P= 0.0003). T7 colonized 10/10 hamsters, but following BI6 challenge, cocolonization occurred in 5 hamsters, 4 of which died, for protection of 6/10 animals (P= 0.02). NTCD colonization provides protection against challenge with toxigenic BI group strains. M3 is more effective than T7 in preventingC. difficileinfection caused by the BI6 epidemic strain. Prevention ofC. difficileinfection caused by the epidemic BI6 strain may be more challenging than that of infections caused by historic BI1 and non-BIC. difficilestrains.


2020 ◽  
Vol 65 (1) ◽  
pp. e01948-20
Author(s):  
Dalin Rifat ◽  
Si-Yang Li ◽  
Thomas Ioerger ◽  
Keshav Shah ◽  
Jean-Philippe Lanoix ◽  
...  

ABSTRACTThe nitroimidazole prodrugs delamanid and pretomanid comprise one of only two new antimicrobial classes approved to treat tuberculosis (TB) in 50 years. Prior in vitro studies suggest a relatively low barrier to nitroimidazole resistance in Mycobacterium tuberculosis, but clinical evidence is limited to date. We selected pretomanid-resistant M. tuberculosis mutants in two mouse models of TB using a range of pretomanid doses. The frequency of spontaneous resistance was approximately 10−5 CFU. Whole-genome sequencing of 161 resistant isolates from 47 mice revealed 99 unique mutations, of which 91% occurred in 1 of 5 genes previously associated with nitroimidazole activation and resistance, namely, fbiC (56%), fbiA (15%), ddn (12%), fgd (4%), and fbiB (4%). Nearly all mutations were unique to a single mouse and not previously identified. The remaining 9% of resistant mutants harbored mutations in Rv2983 (fbiD), a gene not previously associated with nitroimidazole resistance but recently shown to be a guanylyltransferase necessary for cofactor F420 synthesis. Most mutants exhibited high-level resistance to pretomanid and delamanid, although Rv2983 and fbiB mutants exhibited high-level pretomanid resistance but relatively small changes in delamanid susceptibility. Complementing an Rv2983 mutant with wild-type Rv2983 restored susceptibility to pretomanid and delamanid. By quantifying intracellular F420 and its precursor Fo in overexpressing and loss-of-function mutants, we provide further evidence that Rv2983 is necessary for F420 biosynthesis. Finally, Rv2983 mutants and other F420H2-deficient mutants displayed hypersusceptibility to some antibiotics and to concentrations of malachite green found in solid media used to isolate and propagate mycobacteria from clinical samples.


2011 ◽  
Vol 55 (11) ◽  
pp. 5262-5266 ◽  
Author(s):  
Sophie A. Granier ◽  
Laura Hidalgo ◽  
Alvaro San Millan ◽  
Jose Antonio Escudero ◽  
Belen Gutierrez ◽  
...  

ABSTRACTThe 16S rRNA methyltransferase ArmA is a worldwide emerging determinant that confers high-level resistance to most clinically relevant aminoglycosides. We report here the identification and characterization of a multidrug-resistantSalmonella entericasubspecies I.4,12:i:− isolate recovered from chicken meat sampled in a supermarket on February 2009 in La Reunion, a French island in the Indian Ocean. Susceptibility testing showed an unusually high-level resistance to gentamicin, as well as to ampicillin, expanded-spectrum cephalosporins and amoxicillin-clavulanate. Molecular analysis of the 16S rRNA methyltransferases revealed presence of thearmAgene, together withblaTEM-1,blaCMY-2, andblaCTX-M-3. All of these genes could be transferreden blocthrough conjugation intoEscherichia coliat a frequency of 10−5CFU/donor. Replicon typing and S1 pulsed-field gel electrophoresis revealed that thearmAgene was borne on an ∼150-kb broad-host-range IncP plasmid, pB1010. To elucidate howarmAhad integrated in pB1010, a PCR mapping strategy was developed for Tn1548, the genetic platform forarmA.The gene was embedded in a Tn1548-like structure, albeit with a deletion of the macrolide resistance genes, and an IS26was inserted within themelgene. To our knowledge, this is the first report of ArmA methyltransferase in food, showing a novel route of transmission for this resistance determinant. Further surveillance in food-borne bacteria will be crucial to determine the role of food in the spread of 16S rRNA methyltransferase genes worldwide.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Yu-Ping Hong ◽  
Ying-Tsong Chen ◽  
You-Wun Wang ◽  
Bo-Han Chen ◽  
Ru-Hsiou Teng ◽  
...  

ABSTRACT We identified an erm42-carrying integrative and conjugative element, ICE_erm42, in 26.4% of multidrug-resistant Salmonella enterica serovar Albany isolates recovered from cases of human salmonellosis between 2014 and 2019 in Taiwan. ICE_erm42-carrying strains displayed high-level resistance to azithromycin, and the element could move into the phylogenetically distant species Vibrio cholerae via conjugation.


2010 ◽  
Vol 138 (5) ◽  
pp. S-209
Author(s):  
Nabeel Koro ◽  
Yazan Abdalla ◽  
Fasiha Kanwal ◽  
Jay R. McDonald ◽  
Angelique L. Zeringue ◽  
...  

2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Nabila Ismail ◽  
Nazir A. Ismail ◽  
Shaheed V. Omar ◽  
Remco P. H. Peters

ABSTRACT Bedaquiline resistance within Mycobacterium tuberculosis may arise through efflux-based (rv0678) or target-based (atpE) pathway mutations. M. tuberculosis mutant populations from each of five sequential steps in a passaging approach, using a pyrazinamide-resistant ATCC strain, were subjected to MIC determinations and whole-genome sequencing. Exposure to increasing bedaquiline concentrations resulted in increasing phenotypic resistance (up to >2 μg/ml) through MIC determination on solid medium (Middlebrook 7H10). rv0678 mutations were dynamic, while atpE mutations were fixed, once occurring. We present the following hypothesis for in vitro emergence of bedaquiline resistance: rv0678 mutations may be the first transient step in low-level resistance acquisition, followed by high-level resistance due to fixed atpE mutations.


2014 ◽  
Vol 58 (4) ◽  
pp. 2472-2474 ◽  
Author(s):  
Laurent Poirel ◽  
Encho Savov ◽  
Arzu Nazli ◽  
Angelina Trifonova ◽  
Iva Todorova ◽  
...  

ABSTRACTTwelve consecutive carbapenem-resistantEscherichia coliisolates were recovered from patients (infection or colonization) hospitalized between March and September 2012 in different units at a hospital in Bulgaria. They all produced the carbapenemase NDM-1 and the extended-spectrum-β-lactamase CTX-M-15, together with the 16S rRNA methylase RmtB, conferring high-level resistance to all aminoglycosides. All those isolates were clonally related and belonged to the same sequence type, ST101. In addition to being the first to identify NDM-producing isolates in Bulgaria, this is the very first study reporting an outbreak of NDM-1-producingE. coliin the world.


2015 ◽  
Vol 59 (7) ◽  
pp. 4139-4147 ◽  
Author(s):  
Hannah M. Adams ◽  
Xiang Li ◽  
Carmela Mascio ◽  
Laurent Chesnel ◽  
Kelli L. Palmer

ABSTRACTClostridium difficileinfection (CDI) is an urgent public health concern causing considerable clinical and economic burdens. CDI can be treated with antibiotics, but recurrence of the disease following successful treatment of the initial episode often occurs. Surotomycin is a rapidly bactericidal cyclic lipopeptide antibiotic that is in clinical trials for CDI treatment and that has demonstrated superiority over vancomycin in preventing CDI relapse. Surotomycin is a structural analogue of the membrane-active antibiotic daptomycin. Previously, we utilizedin vitroserial passage experiments to deriveC. difficilestrains with reduced surotomycin susceptibilities. The parent strains used included ATCC 700057 and clinical isolates from the restriction endonuclease analysis (REA) groups BI and K. Serial passage experiments were also performed with vancomycin-resistant and vancomycin-susceptibleEnterococcus faeciumandEnterococcus faecalis. The goal of this study is to identify mutations associated with reduced surotomycin susceptibility inC. difficileand enterococci. Illumina sequence data generated for the parent strains and serial passage isolates were compared. We identified nonsynonymous mutations in genes coding for cardiolipin synthase inC. difficileATCC 700057, enoyl-(acyl carrier protein) reductase II (FabK) and cell division protein FtsH2 inC. difficileREA type BI, and a PadR family transcriptional regulator inC. difficileREA type K. Among the 4 enterococcal strain pairs, 20 mutations were identified, and those mutations overlap those associated with daptomycin resistance. These data give insight into the mechanism of action of surotomycin againstC. difficile, possible mechanisms for resistance emergence during clinical use, and the potential impacts of surotomycin therapy on intestinal enterococci.


Sign in / Sign up

Export Citation Format

Share Document