scholarly journals Molecular Characterization of MexL, the Transcriptional Repressor of the mexJK Multidrug Efflux Operon in Pseudomonas aeruginosa

2005 ◽  
Vol 49 (5) ◽  
pp. 1844-1851 ◽  
Author(s):  
Rungtip Chuanchuen ◽  
Jared B. Gaynor ◽  
RoxAnn Karkhoff-Schweizer ◽  
Herbert P. Schweizer

ABSTRACT The Pseudomonas aeruginosa mexJK efflux operon is constitutively expressed in mutants with defects in the upstream mexL gene, which encodes a repressor of the TetR family. MexL and a MexLA47D mutant protein were purified from Escherichia coli as fusion proteins with carboxy-terminal hexahistidine tags. Native polyacrylamide gel electrophoresis and size exclusion chromatography revealed that MexL is a tetramer in solution. MexL and MexLA47D oligomerization was confirmed using a genetic approach, and the MexLA47D mutant protein was not impaired in multimerization. Gel mobility shift and footprinting assays demonstrated that MexL, but not MexLA47D, binds specifically to the 94-bp mexL-mexJ intergenic region to sequences located between positions −84 and −20 from the mexJ initiation codon. MexL protected about 60 nucleotides on each strand, and the protected regions overlapped almost perfectly, a finding consistent with MexL regulating the expression of both mexL and mexJK, which was ascertained by gene fusion analyses. The protected region contains predicted −10 and −35 promoter sequences for both mexL and mexJ, with partially overlapping −10 regions. The mexL promoter assignment was verified by mapping the mexL transcription start site, and the mexJ promoter was localized to the predicted regions using lacZ fusions. The MexL-protected region contains two inverted GTATTT repeats, and their location in the protected region and overlap with the mexL and mexJ promoter sequences strongly support a role in MexL binding.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Olga Ilinskaya ◽  
Vera Ulyanova ◽  
Irina Lisevich ◽  
Elena Dudkina ◽  
Nataliya Zakharchenko ◽  
...  

Supported by crystallography studies, secreted ribonuclease of Bacillus pumilus (binase) has long been considered to be monomeric in form. Recent evidence obtained using native polyacrylamide gel electrophoresis and size-exclusion chromatography suggests that binase is in fact dimeric. To eliminate ambiguity and contradictions in the data we have measured conformational changes, hypochromic effect, and hydrodynamic radius of binase. The immutability of binase secondary structure upon transition from low to high protein concentration was registered, suggesting the binase dimerization immediately after translocation through the cell membrane and leading to detection of binase dimers only in the culture fluid regardless of ribonuclease concentration. Our results made it necessary to take a fresh look at the binase stability and cytotoxicity towards virus-infected or tumor cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jack Jingyuan Zheng ◽  
Joanne K. Agus ◽  
Brian V. Hong ◽  
Xinyu Tang ◽  
Christopher H. Rhodes ◽  
...  

AbstractHigh-density lipoprotein (HDL) particles have multiple beneficial and cardioprotective roles, yet our understanding of their full structural and functional repertoire is limited due to challenges in separating HDL particles from contaminating plasma proteins and other lipid-carrying particles that overlap HDL in size and/or density. Here we describe a method for isolating HDL particles using a combination of sequential flotation density ultracentrifugation and fast protein liquid chromatography with a size exclusion column. Purity was visualized by polyacrylamide gel electrophoresis and verified by proteomics, while size and structural integrity were confirmed by transmission electron microscopy. This HDL isolation method can be used to isolate a high yield of purified HDL from a low starting plasma volume for functional analyses. This method also enables investigators to select their specific HDL fraction of interest: from the least inclusive but highest purity HDL fraction eluting in the middle of the HDL peak, to pooling all of the fractions to capture the breadth of HDL particles in the original plasma sample. We show that certain proteins such as lecithin cholesterol acyltransferase (LCAT), phospholipid transfer protein (PLTP), and clusterin (CLUS) are enriched in large HDL particles whereas proteins such as alpha-2HS-glycoprotein (A2HSG), alpha-1 antitrypsin (A1AT), and vitamin D binding protein (VDBP) are enriched or found exclusively in small HDL particles.


1982 ◽  
Vol 152 (1) ◽  
pp. 239-245
Author(s):  
R M Berka ◽  
M L Vasil

Phospholipase C (heat-labile hemolysin) was purified from Pseudomonas aeruginosa culture supernatants to near homogeneity by ammonium sulfate precipitation followed by a novel application of DEAE-Sephacel chromatography. Enzymatic activity remained associated with DEAE-Sephacel even in the presence of 1 M NaCl, but was eluted with a linear gradient of 0 to 5% tetradecyltrimethylammonium bromide. Elution from DEAE-Sephacel was also obtained with 2% lysophosphatidylcholine, and to a lesser extent with 2% phosphorylcholine, but not at all with choline. The enzyme was highly active toward phospholipids possessing substituted ammonium groups (e.g., phosphatidycholine, lysophosphatidylcholine, and sphingomyelin); however, it had little if any activity toward phospholipids lacking substituted ammonium groups (e.g., phosphatidylethanolamine, phosphatidylserine, and phosphaditylglycerol). Collectively, these data suggest that phospholipase C from P. aeruginosa exhibits high affinity for substituted ammonium groups, but requires an additional hydrophobic moiety for optimum binding. The specific activity of the purified enzyme preparation increased 1,900-fold compared with that of culture supernatants. The molecular weight of the phospholipase C was estimated to be 78,000 by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Sephacryl S-200 column chromatography and was 76,000 by high-performance size exclusion chromatography. The isoelectric point was 5.5. Amino acid analysis showed that phospholipase C was rich in glycine, serine, threonine, aspartyl, glutamyl, and aromatic amino acids, but was cystine free.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 472
Author(s):  
Richard Marchal ◽  
Thomas Salmon ◽  
Ramon Gonzalez ◽  
Belinda Kemp ◽  
Céline Vrigneau ◽  
...  

Botrytis cinerea is a fungal pathogen responsible for the decrease in foamability of sparkling wines. The proteolysis of must proteins originating from botrytized grapes is well known, but far less information is available concerning the effect of grape juice contamination by Botrytis. The impact from Botrytis on the biochemical and physico-chemical characteristics of proteins released from Saccharomyces during alcoholic fermentation remains elusive. To address this lack of knowledge, a model grape juice was inoculated with three enological yeasts with or without the Botrytis culture supernatant. Size exclusion chromatography coupled to multi-angle light scattering (SEC-MALLS) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) techniques (AgNO3 and periodic acid Schiff staining) was used in the study. When Botrytis enzymes were present, a significant degradation of the higher and medium MW molecules released by Saccharomyces was observed during alcoholic fermentation whilst the lower MW fraction increased. For the three yeast strains studied, the results clearly showed a strong decrease in the wine foamability when synthetic musts were inoculated with 5% (v/v) of Botrytis culture due to fungus proteases.


2008 ◽  
Vol 41 (6) ◽  
pp. 1150-1160 ◽  
Author(s):  
Jichun Ma ◽  
Di Xia

Crystallization has long been one of the bottlenecks in obtaining structural information at atomic resolution for membrane proteins. This is largely due to difficulties in obtaining high-quality protein samples. One frequently used indicator of protein quality for successful crystallization is the monodispersity of proteins in solution, which is conventionally obtained by size exclusion chromatography (SEC) or by dynamic light scattering (DLS). Although useful in evaluating the quality of soluble proteins, these methods are not always applicable to membrane proteins either because of the interference from detergent micelles or because of the requirement for large sample quantities. Here, the use of blue native polyacrylamide gel electrophoresis (BN–PAGE) to assess aggregation states of membrane protein samples is reported. A strong correlation is demonstrated between the monodispersity measured by BN–PAGE and the propensity for crystallization of a number of soluble and membrane protein complexes. Moreover, it is shown that there is a direct correspondence between the oligomeric states of proteins as measured by BN–PAGE and those obtained from their crystalline forms. When applied to a membrane protein with unknown structure, BN–PAGE was found to be useful and efficient for selecting well behaved proteins from various constructs and in screening detergents. Comparisons of BN–PAGE with DLS and SEC are provided.


1992 ◽  
Vol 70 (9) ◽  
pp. 787-791 ◽  
Author(s):  
Thillainathan Yoganathan ◽  
Bruce H. Sells

The murine ribosomal protein (rp) L32 gene contains essential promoter sequences located both upstream and downstream of the cap site. A combination of gel mobility shift, UV cross-linking, and cell-free transcription assays were used to analyze the interaction of factors binding to a downstream element (located at position +25 to +37). The rpL32 downstream element identified polypeptides (transcription factors) ranging in size from 45 to 25 kilodaltons (kDa). Four base pair changes in the wild-type sequence of the downstream element eliminated binding. An oligonucleotide containing the glucocorticoid responsive element sequence competed specifically for the 45-kDa protein in both the gel mobility shift assay and in the UV cross-linking studies. Our data also indicate that the downstream binding factors contribute to cell-free transcription of the rpL32 gene.Key words: ribosomal protein L32, transcription factor, glucocorticoid response element.


1998 ◽  
Vol 180 (7) ◽  
pp. 1741-1749 ◽  
Author(s):  
Ju-Fang Ma ◽  
Paul W. Hager ◽  
Michael L. Howell ◽  
Paul V. Phibbs ◽  
Daniel J. Hassett

ABSTRACT In this study, we cloned the Pseudomonas aeruginosa zwfgene, encoding glucose-6-phosphate dehydrogenase (G6PDH), an enzyme that catalyzes the NAD+- or NADP+-dependent conversion of glucose-6-phosphate to 6-phosphogluconate. The predictedzwf gene product is 490 residues, which could form a tetramer with a molecular mass of ∼220 kDa. G6PDH activity andzwf transcription were maximal in early logarithmic phase when inducing substrates such as glycerol, glucose, or gluconate were abundant. In contrast, both G6PDH activity and zwftranscription plummeted dramatically when bacteria approached stationary phase, when inducing substrate was limiting, or when the organisms were grown in a citrate-, succinate-, or acetate-containing basal salts medium. G6PDH was purified to homogeneity, and its molecular mass was estimated to be ∼220 kDa by size exclusion chromatography. Estimated Km values of purified G6PDH acting on glucose-6-phosphate, NADP+, and NAD+ were 530, 57, and 333 μM, respectively. The specific activities with NAD+ and NADP+ were calculated to be 176 and 69 μmol/min/mg. An isogenic zwf mutant was unable to grow on minimal medium supplemented with mannitol. The mutant also demonstrated increased sensitivity to the redox-active superoxide-generating agent methyl viologen (paraquat). Since one by-product of G6PDH activity is NADPH, the latter data suggest that this cofactor is essential for the activity of enzymes critical in defense against paraquat toxicity.


2000 ◽  
Vol 66 (4) ◽  
pp. 1379-1384 ◽  
Author(s):  
Katrien M. J. Van Laere ◽  
Tjakko Abee ◽  
Henk A. Schols ◽  
Gerrit Beldman ◽  
Alphons G. J. Voragen

ABSTRACT This paper reports on the effects of both reducing and nonreducing transgalactooligosaccharides (TOS) comprising 2 to 8 residues on the growth of Bifidobacterium adolescentis DSM 20083 and on the production of a novel β-galactosidase (β-Gal II). In cells grown on TOS, in addition to the lactose-degrading β-Gal (β-Gal I), another β-Gal (β-Gal II) was detected and it showed activity towards TOS but not towards lactose. β-Gal II activity was at least 20-fold higher when cells were grown on TOS than when cells were grown on galactose, glucose, and lactose. Subsequently, the enzyme was purified from the cell extract of TOS-grown B. adolescentis by anion-exchange chromatography, adsorption chromatography, and size-exclusion chromatography. β-Gal II has apparent molecular masses of 350 and 89 kDa as judged by size-exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively, indicating that the enzyme is active in vivo as a tetramer. β-Gal II had an optimal activity at pH 6 and was not active below pH 5. Its optimum temperature was 35°C. The enzyme showed highestV max values towards galactooligosaccharides with a low degree of polymerization. This result is in agreement with the observation that during fermentation of TOS, the di- and trisaccharides were fermented first. β-Gal II was active towards β-galactosyl residues that were 1→4, 1→6, 1→3, and 1↔1 linked, signifying its role in the metabolism of galactooligosaccharides by B. adolescentis.


1984 ◽  
Vol 160 (3) ◽  
pp. 772-787 ◽  
Author(s):  
J A Schmidt

A protocol for the rapid, efficient purification of the major charged species of human interleukin 1 (IL-1) has been developed using high performance anion exchange and size exclusion chromatography. The isolated material is pure as determined by sodium dodecyl sulfate (SDS) gradient polyacrylamide gel electrophoresis (PAGE) and analytical isoelectric focusing (IEF). The molecular weight of the purified material is 15,000 and the isoelectric point (pI) is 6.8, values that are in good agreement with those previously reported for human IL-1. 10(-10) M concentrations of the purified material give half-maximal stimulation in the thymocyte proliferation assay. Amounts of IL-1 sufficient for receptor studies and detailed biochemical analysis can now be produced on a regular basis.


Sign in / Sign up

Export Citation Format

Share Document