scholarly journals Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor

2008 ◽  
Vol 74 (9) ◽  
pp. 2573-2582 ◽  
Author(s):  
Ana Arabolaza ◽  
Eduardo Rodriguez ◽  
Silvia Altabe ◽  
Hector Alvarez ◽  
Hugo Gramajo

ABSTRACT The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recently identified wax ester synthase/acyl-coenzyme A (CoA):DAG acyltransferase (DGAT) from Acinetobacter baylyi. The deletion of either sco0123 or sco1280 resulted in no detectable decrease in TAG accumulation. In contrast, the deletion of sco0958 produced a dramatic reduction in neutral lipid production, whereas the overexpression of this gene yielded a significant increase in de novo TAG biosynthesis. In vitro activity assays showed that Sco0958 mediates the esterification of DAG using long-chain acyl-CoAs (C14 to C18) as acyl donors. The Km and V max values of this enzyme for myristoyl-CoA were 45 μM and 822 nmol mg−1 min−1, respectively. Significantly, the triple mutant strain was not completely devoid of storage lipids, indicating the existence of alternative TAG-biosynthetic routes. We present strong evidence demonstrating that the residual production of TAG in this mutant strain is mediated, at least in part, by an acyl-CoA-dependent pathway, since the triple mutant still exhibited DGAT activity. More importantly, there was substantial phospholipid:DGAT (PDAT) activity in the wild type and in the triple mutant. This is the first time that a PDAT activity has been reported for bacteria, highlighting the extreme metabolic diversity of this industrially important soil microorganism.

2017 ◽  
Vol 63 (4) ◽  
pp. 321-329 ◽  
Author(s):  
Rahul Ukey ◽  
William E. Holmes ◽  
Rakesh Bajpai ◽  
Andrei Y. Chistoserdov

Acinetobacter baylyi is one of few Gram-negative bacteria capable of accumulating storage lipids in the form of triacylglycerides and wax esters, which makes it an attractive candidate for production of lipophilic products, including biofuel precursors. Thioesterases play a significant dual role in the triacylglyceride and wax ester biosynthesis by either providing or removing acyl-CoA from this pathway. Therefore, 4 different thioesterase genes were cloned from Acinetobacter baylyi ADP1 and expressed in Escherichia coli to investigate their contribution to free fatty acids (FFAs) accumulation. Overexpression of the genes tesA′ (a leaderless form of the gene tesA) and tesC resulted in increased accumulation of FFAs when compared with the host E. coli strain. Overexpression of tesA′ showed a 1.87-fold increase in production of long-chain fatty acids (C16 to C18) over the host strain. Unlike TesC and the other investigated thioesterases, the TesA′ thioesterase also produced shorter chain FFAs (e.g., myristic acid) and unsaturated FFAs (e.g., cis-vaccenic acid (18:1Δ11)). A comparison of the remaining 3 A. baylyi ADP1 thioesterases (encoded by the tesB, tesC, and tesD genes) revealed that only the strain containing the tesC gene produced statistically higher levels of FFAs over the control, suggesting that it possesses the acyl-ACP thioesterase activity. Both E. coli strains containing the tesB and tesD genes produced levels of FFAs similar to those of the plasmid-free control E. coli strain, which indicates that TesB and TesD lack the acyl-ACP thioesterase activity.


2004 ◽  
Vol 70 (12) ◽  
pp. 7119-7125 ◽  
Author(s):  
Rainer Kalscheuer ◽  
Heinrich Luftmann ◽  
Alexander Steinbüchel

ABSTRACT The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT) is the key enzyme in storage lipid accumulation in the gram-negative bacterium Acinetobacter calcoaceticus ADP1, mediating wax ester, and to a lesser extent, triacylglycerol (TAG) biosynthesis. Saccharomyces cerevisiae accumulates TAGs and steryl esters as storage lipids. Four genes encoding a DGAT (Dga1p), a phospholipid:diacylglycerol acyltransferase (Lro1p) and two acyl-coenzyme A:sterol acyltransferases (ASATs) (Are1p and Are2p) are involved in the final esterification steps in TAG and steryl ester biosynthesis in this yeast. In the quadruple mutant strain S. cerevisiae H1246, the disruption of DGA1, LRO1, ARE1, and ARE2 leads to an inability to synthesize storage lipids. Heterologous expression of WS/DGAT from A. calcoaceticus ADP1 in S. cerevisiae H1246 restored TAG but not steryl ester biosynthesis, although high levels of ASAT activity could be demonstrated for WS/DGAT expressed in Escherichia coli XL1-Blue in radiometric in vitro assays with cholesterol and ergosterol as substrates. In addition to TAG synthesis, heterologous expression of WS/DGAT in S. cerevisiae H1246 resulted also in the accumulation of fatty acid ethyl esters as well as fatty acid isoamyl esters. In vitro studies confirmed that WS/DGAT is capable of utilizing a broad range of alcohols as substrates comprising long-chain fatty alcohols like hexadecanol as well as short-chain alcohols like ethanol or isoamyl alcohol. This study demonstrated the highly unspecific acyltransferase activity of WS/DGAT from A. calcoaceticus ADP1, indicating the broad biocatalytic potential of this enzyme for biotechnological production of a large variety of lipids in vivo in prokaryotic as well as eukaryotic expression hosts.


2019 ◽  
Author(s):  
Jin Luo ◽  
Elena Efimova ◽  
Pauli Losoi ◽  
Ville Santala ◽  
Suvi Santala

AbstractMetabolic engineering can be used as a powerful tool to redirect cell resources towards product synthesis, also in conditions that are not optimal. An example of a synthesis pathway strongly dependent on external conditions is the production of storage lipids, which typically requires high carbon/nitrogen ratio. Acinetobacter baylyi ADP1 is known for its ability to produce industrially interesting storage lipids, namely wax esters (WEs). Here, we engineered the central carbon metabolism of A. baylyi ADP1 by deletion of the gene aceA encoding for isocitrate lyase in order to allow redirection of carbon towards WEs. The production was further enhanced by overexpression of fatty acyl-CoA reductase Acr1 in the wax ester production pathway. This strategy led to 3-fold improvement in yield (0.075 g/g glucose) and 3.15-fold improvement in titer (1.82 g/L) and productivity (0.038 g/L/h) by a simple one-stage batch cultivation with glucose as carbon source. The engineered strain accumulated up to 27% WEs of cell dry weight. The titer and cellular WE content are the highest reported to date among microbes. We further showed that the engineering strategy alleviated the inherent requirement for high carbon/nitrogen ratio and demonstrated the production of wax esters using nitrogen-rich substrates including casamino acids, yeast extract and baker’s yeast hydrolysate, which support biomass production but not WE production in wild-type cells. The study demonstrates the power of metabolic engineering in overcoming natural limitations in the production of storage lipids.


2014 ◽  
Vol 80 (22) ◽  
pp. 7021-7027 ◽  
Author(s):  
Matti Kannisto ◽  
Tommi Aho ◽  
Matti Karp ◽  
Ville Santala

ABSTRACTA high growth rate in bacterial cultures is usually achieved by optimizing growth conditions, but metabolism of the bacterium limits the maximal growth rate attainable on the carbon source used. This limitation can be circumvented by engineering the metabolism of the bacterium.Acinetobacter baylyihas become a model organism for studies of bacterial metabolism and metabolic engineering due to its wide substrate spectrum and easy-to-engineer genome. It produces naturally storage lipids, such as wax esters, and has a unique gluconate catabolism as it lacks a gene for pyruvate kinase. We engineered the central metabolism ofA. baylyiADP1 more favorable for gluconate catabolism by expressing the pyruvate kinase gene (pykF) ofEscherichia coli. This modification increased growth rate when cultivated on gluconate or glucose as a sole carbon source in a batch cultivation. The engineered cells reached stationary phase on these carbon sources approximately twice as fast as control cells carrying an empty plasmid and produced similar amount of biomass. Furthermore, when grown on either gluconate or glucose,pykFexpression did not lead to significant accumulation of overflow metabolites and consumption of the substrate remained unaltered. Increased growth rate on glucose was not accompanied with decreased wax ester production, and thepykF-expressing cells accumulated significantly more of these storage lipids with respect to cultivation time.


2012 ◽  
Vol 78 (16) ◽  
pp. 5734-5745 ◽  
Author(s):  
Brett M. Barney ◽  
Bradley D. Wahlen ◽  
EmmaLee Garner ◽  
Jiashi Wei ◽  
Lance C. Seefeldt

ABSTRACTWax esters are produced in certain bacteria as a potential carbon and energy storage compound. The final enzyme in the biosynthetic pathway responsible for wax ester production is the bifunctional wax ester synthase/acyl-coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT), which utilizes a range of fatty alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. We report here the isolation and substrate range characterization for five WS/DGAT enzymes from four different bacteria:Marinobacter aquaeoleiVT8,Acinetobacter baylyi,Rhodococcus jostiiRHA1, andPsychrobacter cryohalolentisK5. The results from kinetic studies of isolated enzymes reveal a differential activity based on the order of substrate addition and reveal subtle differences between the substrate selectivity of the different enzymes. Thesein vitroresults are compared to the wax ester and triacylglyceride product profiles obtained from each organism grown under neutral lipid accumulating conditions, providing potential insights into the role that the WS/DGAT enzyme plays in determining the final wax ester products that are produced under conditions of nutrient stress in each of these bacteria. Further, the analysis revealed that one enzyme in particular fromM. aquaeoleiVT8 showed the greatest potential for future study based on rapid purification and significantly higher activity than was found for the other isolated WS/DGAT enzymes. The results provide a framework to test prospective differences between these enzymes for potential biotechnological applications such as high-value petrochemicals and biofuel production.


2006 ◽  
Vol 189 (3) ◽  
pp. 918-928 ◽  
Author(s):  
Rainer Kalscheuer ◽  
Tim Stöveken ◽  
Ursula Malkus ◽  
Rudolf Reichelt ◽  
Peter N. Golyshin ◽  
...  

ABSTRACT Marine hydrocarbonoclastic bacteria, like Alcanivorax borkumensis, play a globally important role in bioremediation of petroleum oil contamination in marine ecosystems. Accumulation of storage lipids, serving as endogenous carbon and energy sources during starvation periods, might be a potential adaptation mechanism for coping with nutrient limitation, which is a frequent stress factor challenging those bacteria in their natural marine habitats. Here we report on the analysis of storage lipid biosynthesis in A. borkumensis strain SK2. Triacylglycerols (TAGs) and wax esters (WEs), but not poly(hydroxyalkanoic acids), are the principal storage lipids present in this and other hydrocarbonoclastic bacterial species. Although so far assumed to be a characteristic restricted to gram-positive actinomycetes, substantial accumulation of TAGs corresponding to a fatty acid content of more than 23% of the cellular dry weight is the first characteristic of large-scale de novo TAG biosynthesis in a gram-negative bacterium. The acyltransferase AtfA1 (ABO_2742) exhibiting wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT) activity plays a key role in both TAG and WE biosynthesis, whereas AtfA2 (ABO_1804) was dispensable for storage lipid formation. However, reduced but still substantial residual TAG levels in atfA1 and atfA2 knockout mutants compellingly indicate the existence of a yet unknown WS/DGAT-independent alternative TAG biosynthesis route. Storage lipids of A. borkumensis were enriched in saturated fatty acids and accumulated as insoluble intracytoplasmic inclusions exhibiting great structural variety. Storage lipid accumulation provided only a slight growth advantage during short-term starvation periods but was not required for maintaining viability and long-term persistence during extended starvation phases.


1969 ◽  
Vol 08 (02) ◽  
pp. 196-206 ◽  
Author(s):  
Dieter. Kummer
Keyword(s):  

ZusammenfassungIn nahezu glucosefreier Suspension von Ehrlich-Ascitescarcinomzellen bewirkt die Zufuhr von Glucose 2,5 × 10–4 bis 10–2 M:1. Hemmung der [14C] Thymidin-Einbaurate in die Zellen.2. Aktivierung des Ribonucleotid-Reductase-Systems und damit Stimulierung der Desoxyribonucleotidsynthese (auch der Thymidintriphosphat-de-novo-Synthese).3. Blockierung der Thymidinkinase über Endprodukthemmung, wodurch die Minderung des [14C] Thymidin-Einbaus in die Zellen erklärbar ist.


Author(s):  
Альбина Шамсуновна Ахметова ◽  
Альфия Ануровна Зарипова
Keyword(s):  

Показана возможность эффективного применения метода культуры тканей для размножения Allium neriniflorum (Herb.) Backer. Исследуемый вид является декоративным растением, размножение которого затруднено из-за низкой всхожести семян и ослабленной способности к формированию дочерних луковиц. Разработана технология клонального микроразмножения из стерильных луковиц. В качестве исходного материала использовали семена A. neriniflorum. Подобраны условия стерилизации, позволяющие достичь максимального числа (75 %) жизнеспособных эксплантов. Поверхностную стерилизацию проводили в ламинар-боксе с использованием в качестве стерилизующего агента 0,1 % раствор диацида. Семена сначала обрабатывали 70 % этанолом, затем стерилизующим раствором. Экспозиция стерилизующих растворов составляла от 5 до 9 мин. Показано, что способность к индуцированному морфогенезу существенно зависит от состава питательной среды. Максимальное число луковиц образовывалось на среде QL — 9 шт./эксплант. Исследуемые виды обладали высокой способностью к мультипликации и формированию полноценных растений при подобранных условиях культивирования in vitro. Выявленная морфогенетическая активность зачаточного побега, сегментов чешуй и донца стерильной луковицы A. neriniflorum, проявляющаяся в способности регенерировать побеги de novo, что возможно только в культуре in vitro, обеспечивает формирование полноценных луковиц. Луковицы, полученные in vitro, включали в последующие циклы микроразмножения. Культура тканей и органов in vitro позволяет размножать A. neriniflorum с более высоким коэффициентом размножения. От одной стерильной луковицы можно получить до 7000 луковиц в год. При традиционном вегетативном способе размножения материнская луковица формирует 1, редко 2 дочерние луковицы.


2017 ◽  
Vol 68 (6) ◽  
pp. 1188-1192
Author(s):  
Daniela Avram ◽  
Nicolae Angelescu ◽  
Dan Nicolae Ungureanu ◽  
Ionica Ionita ◽  
Iulian Bancuta ◽  
...  

The study in vitro of the glass powders bioactivity was performed by soaking them in simulated body fluid for 3 to 21 days at a temperature of 37�C and pH = 7.20. The synthesis de novo of hydroxyapatite, post soaking was confirmed by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study of the antimicrobial activity was performed by microbiological examination on two strains of pathogenic bacteria involved in postoperative nosocomial infections.


2019 ◽  
Vol 19 (17) ◽  
pp. 1521-1534 ◽  
Author(s):  
Anatoly Sorokin ◽  
Vsevolod Shurkhay ◽  
Stanislav Pekov ◽  
Evgeny Zhvansky ◽  
Daniil Ivanov ◽  
...  

Cells metabolism alteration is the new hallmark of cancer, as well as an important method for carcinogenesis investigation. It is well known that the malignant cells switch to aerobic glycolysis pathway occurring also in healthy proliferating cells. Recently, it was shown that in malignant cells de novo synthesis of the intracellular fatty acid replaces dietary fatty acids which change the lipid composition of cancer cells noticeably. These alterations in energy metabolism and structural lipid production explain the high proliferation rate of malignant tissues. However, metabolic reprogramming affects not only lipid metabolism but many of the metabolic pathways in the cell. 2-hydroxyglutarate was considered as cancer cell biomarker and its presence is associated with oxidative stress influencing the mitochondria functions. Among the variety of metabolite detection methods, mass spectrometry stands out as the most effective method for simultaneous identification and quantification of the metabolites. As the metabolic reprogramming is tightly connected with epigenetics and signaling modifications, the evaluation of metabolite alterations in cells is a promising approach to investigate the carcinogenesis which is necessary for improving current diagnostic capabilities and therapeutic capabilities. In this paper, we overview recent studies on metabolic alteration and oncometabolites, especially concerning brain cancer and mass spectrometry approaches which are now in use for the investigation of the metabolic pathway.


Sign in / Sign up

Export Citation Format

Share Document