scholarly journals Analysis of Storage Lipid Accumulation in Alcanivorax borkumensis: Evidence for Alternative Triacylglycerol Biosynthesis Routes in Bacteria

2006 ◽  
Vol 189 (3) ◽  
pp. 918-928 ◽  
Author(s):  
Rainer Kalscheuer ◽  
Tim Stöveken ◽  
Ursula Malkus ◽  
Rudolf Reichelt ◽  
Peter N. Golyshin ◽  
...  

ABSTRACT Marine hydrocarbonoclastic bacteria, like Alcanivorax borkumensis, play a globally important role in bioremediation of petroleum oil contamination in marine ecosystems. Accumulation of storage lipids, serving as endogenous carbon and energy sources during starvation periods, might be a potential adaptation mechanism for coping with nutrient limitation, which is a frequent stress factor challenging those bacteria in their natural marine habitats. Here we report on the analysis of storage lipid biosynthesis in A. borkumensis strain SK2. Triacylglycerols (TAGs) and wax esters (WEs), but not poly(hydroxyalkanoic acids), are the principal storage lipids present in this and other hydrocarbonoclastic bacterial species. Although so far assumed to be a characteristic restricted to gram-positive actinomycetes, substantial accumulation of TAGs corresponding to a fatty acid content of more than 23% of the cellular dry weight is the first characteristic of large-scale de novo TAG biosynthesis in a gram-negative bacterium. The acyltransferase AtfA1 (ABO_2742) exhibiting wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT) activity plays a key role in both TAG and WE biosynthesis, whereas AtfA2 (ABO_1804) was dispensable for storage lipid formation. However, reduced but still substantial residual TAG levels in atfA1 and atfA2 knockout mutants compellingly indicate the existence of a yet unknown WS/DGAT-independent alternative TAG biosynthesis route. Storage lipids of A. borkumensis were enriched in saturated fatty acids and accumulated as insoluble intracytoplasmic inclusions exhibiting great structural variety. Storage lipid accumulation provided only a slight growth advantage during short-term starvation periods but was not required for maintaining viability and long-term persistence during extended starvation phases.

2008 ◽  
Vol 74 (9) ◽  
pp. 2573-2582 ◽  
Author(s):  
Ana Arabolaza ◽  
Eduardo Rodriguez ◽  
Silvia Altabe ◽  
Hector Alvarez ◽  
Hugo Gramajo

ABSTRACT The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recently identified wax ester synthase/acyl-coenzyme A (CoA):DAG acyltransferase (DGAT) from Acinetobacter baylyi. The deletion of either sco0123 or sco1280 resulted in no detectable decrease in TAG accumulation. In contrast, the deletion of sco0958 produced a dramatic reduction in neutral lipid production, whereas the overexpression of this gene yielded a significant increase in de novo TAG biosynthesis. In vitro activity assays showed that Sco0958 mediates the esterification of DAG using long-chain acyl-CoAs (C14 to C18) as acyl donors. The Km and V max values of this enzyme for myristoyl-CoA were 45 μM and 822 nmol mg−1 min−1, respectively. Significantly, the triple mutant strain was not completely devoid of storage lipids, indicating the existence of alternative TAG-biosynthetic routes. We present strong evidence demonstrating that the residual production of TAG in this mutant strain is mediated, at least in part, by an acyl-CoA-dependent pathway, since the triple mutant still exhibited DGAT activity. More importantly, there was substantial phospholipid:DGAT (PDAT) activity in the wild type and in the triple mutant. This is the first time that a PDAT activity has been reported for bacteria, highlighting the extreme metabolic diversity of this industrially important soil microorganism.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1133
Author(s):  
Atique Ahmed Behan ◽  
Muhammad Tayyab Akhtar ◽  
Teck Chwen Loh ◽  
Sharida Fakurazi ◽  
Ubedullah Kaka ◽  
...  

The supplementation of rumen bypass fat (RBF) has remained one of the preferred approaches used to decrease undesirable saturated fatty acids (FA) and increase beneficial unsaturated FA in the meat. This study was planned to evaluate the influences of rumen bypass fats on meat quality, fatty acid and metabolic profiles in male Dorper sheep (n = 36) with 24.66 ± 0.76 kg (mean ± standard error) initial body weight. Treatment comprised a basal diet (30:70 rice straw to concentrate) with no added RBF as a control (CON), basal diet with prilled fat (PF), basal diet with prilled fat plus lecithin (PFL) and basal diet with calcium soap of palm fatty acids (CaS). The findings revealed that cooking loss, drip loss and shear force in longissimus dorsi (LD) muscle were not affected by RBF supplementation, while meat pH was significantly higher in the CaS on aging day 1. However, the diet supplemented with prilled fat and lecithin modified the meat’s fatty acid profile significantly by increasing unsaturated fatty acids and decreasing saturated fats. The relative quantification of the major differentiating metabolites found in LD muscle of sheep showed that total cholesterol, esterified cholesterol, choline, glycerophosphocholine and glycerophospholipids were significantly lower in CaS and PFL diets, while glycerol and sphingomyelin were significantly higher in CaS and PFL diets. Most of the metabolites in the liver did not show any significant difference. Based on our results, the supplementation of protected fats did not have a negative influence on meat quality and the meat from Dorper sheep fed prilled fat with lecithin contained more healthy fatty acids compared to other diets.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1366
Author(s):  
Cristina Soares ◽  
Sara Sousa ◽  
Susana Machado ◽  
Elsa Vieira ◽  
Ana P. Carvalho ◽  
...  

The total lipid content and lipidic profile of seaweeds harvested in the North Coast and purchased in Portugal were determined in this paper. The amount of total lipids in the different species of seaweeds varied between 0.7 ± 0.1% (Chondrus crispus) and 3.8 ± 0.6% (Ulva spp.). Regarding the fatty acid content, polyunsaturated fatty acids (PUFA) ranged between 0–35%, with Ulva spp. presenting the highest amount; monounsaturated fatty acids (MUFA) varied between 19 and 67%; and saturated fatty acids (SFA) were predominant in C. crispus (45–78%) and Gracilaria spp. (36–79%). Concerning the nutritional indices, the atherogenicity index (AI) was between 0.4–3.2, the thrombogenicity index (TI) ranged from 0.04 to 1.95, except for Gracilaria spp., which had a TI of 7.6, and the hypocholesterolemic/hypercholesterolemic ratio (HH) values ranged between 0.88–4.21, except for Gracilaria spp., which exhibited values between 0.22–9.26. The n6/n3 ratio was below 1 for most of the species evaluated, except for Ascophyllum nodosum, which presented a higher value, although below 2. Considering the PUFA/SFA ratio, seaweeds presented values between 0.11–1.02. The polycyclic aromatic hydrocarbons (PAHs) and aliphatic hydrocarbons (AHCs) contamination of seaweeds under study was also quantified, the values found being much lower than the maximum levels recommended for foodstuff.


2009 ◽  
Vol 2009 ◽  
pp. 212-212
Author(s):  
S J Hosseini Vashan ◽  
N Afzali ◽  
A Golian ◽  
M Malekaneh ◽  
A Allahressani

Palm oil is the most abundant of all oils produced globally. It is very high in saturated fatty acids specifically palmitic acid, but other fatty acids (monounsaturated (MUFA) and polyunsaturated) are presented at low concentrations. In the processing plant some high amount of oleic acid with some other unsaturated fatty acids are extracted and marketed as Palm olein oil, and used to reduce blood or egg cholesterol (Rievelles et al., 1994). The objective of this study was to determine the optimum level of dietary palm olein oil required to enrich the mono-unsaturated fatty acid content of yolk, egg cholesterol and antibody titre.


2018 ◽  
Vol 19 (11) ◽  
pp. 3515 ◽  
Author(s):  
Krizia Sagini ◽  
Lorena Urbanelli ◽  
Eva Costanzi ◽  
Nico Mitro ◽  
Donatella Caruso ◽  
...  

Extracellular vesicles (EVs) are lipid bilayer surrounded particles that are considered an additional way to transmit signals outside the cell. Lipids have not only a structural role in the organization of EVs membrane bilayer, but they also represent a source of lipid mediators that may act on target cells. Senescent cells are characterized by a permanent arrest of cell proliferation, but they are still metabolically active and influence nearby tissue secreting specific signaling mediators, including those carried by EVs. Notably, cellular senescence is associated with increased EVs release. Here, we used gas chromatography coupled to mass spectrometry to investigate the total fatty acid content of EVs released by fibroblasts undergoing H-RasV12-induced senescence and their parental cells. We find that H-RasV12 fibroblasts show increased level of monounsaturated and decreased level of saturated fatty acids, as compared to control cells. These changes are associated with transcriptional up-regulation of specific fatty acid-metabolizing enzymes. The EVs released by both controls and senescent fibroblasts show a higher level of saturated and polyunsaturated species, as compared to parental cells. Considering that fibroblasts undergoing H-RasV12-induced senescence release a higher number of EVs, these findings indicate that senescent cells release via EVs a higher amount of fatty acids, and in particular of polyunsaturated and saturated fatty acids, as compared to control cells.


1982 ◽  
Vol 243 (2) ◽  
pp. G127-G133
Author(s):  
L. M. McLeay ◽  
J. M. Fitzgerald

Effects on ovine gastric function of procedures that increase intestinal unsaturated fatty acid content are unknown, and the present aim was to compare the effects of duodenal unsaturated and saturated fatty acids on gastric secretion in conscious sheep. During the maximal gastric secretory response to a meal, 10 ml gallbladder bile alone or with myristic, palmitic, and stearic acids and oleic, linoleic, and linolenic acids were infused into the duodenum at a rate of 5 g fatty acid . h-1 for 1 h. Compared with control 154 mM NaCl (100%), acid output was reduced to 4-7% of control with infusion of oleic, linoleic, and linolenic acids and myristic acids plus bile. Reductions in acid secretion persisted for up to 5 h from the end of infusion. In contrast, the infusion of palmitic and stearic acids with bile caused mean maximal reductions in acid output, respectively, to only 64 and 55% of control, and levels returned to control within 1 h of the end of infusion. Bile infusion alone caused no reduction in acid secretion. Under the conditions used, C18 unsaturated fatty acids and myristic acid were potent inhibitors of ovine gastric acid secretion. The lesser effects of palmitic and stearic acids were probably related to their reduced solubility and absorption.


2021 ◽  
Author(s):  
Jerry Chien-Yao Chao

Fatty acid (FA) composition between biofilms and batch planktonic cultures were compared for two bacterial species Pseudomonas aeruginosa and Staphylococcus aureaus. Biofilm cultures exhibited decrease in saturated fatty acids (SAFA) that potentially conform to a more fluidic biophysical membrane property. The amount of FA in the biofilms' extracellular polymeric substance was not sufficient to consider it having a major contribution to the observed differences between biofilms and batch planktonic cultures. While biofilm grazing by the amphipod Hyalella azteca was evident, only certain bacteria-specific FA appeared to have the potential to be retained (odd-number SAFA and branched-chain FA). H. azteca with diet strictly consisted of bacteria biofilms did not demonstrate significant changes in their nutritional condition in terms of ω-3 and ω-6 polyunsaturated fatty acids (PUFA): combined with the results from fasting trials, H. azteca appears to have the capacity to retain ω-3 and ω-6 PUFAs up to 10 days.


Author(s):  
Jinyi Qin ◽  
Rui Zhang ◽  
Ruiwen Yang ◽  
Jiao Fang ◽  
Yu Zhang ◽  
...  

Abstract Sewage sludge was subjected to hydrothermal fueling (HTF) (330 °C for 40 min), obtaining hydrochar at 13.5 MJ kg−1. The higher heating value (HHV) of the raw sludge was related to its fatty acid content. The results showed that although the higher heating value (HHV) of the raw sludge was related to its fatty acid content, with the intensification of HTF, the increase in aliphatic/cyclic amino acids determined the production of HHV in the hydrochar. In order to increase the content of fatty acids and amino acids, the sludge was fermented. However, the Bacteroidetes consumed the organic matter too early, which was detrimental to the production of HHV. Therefore, appropriate sludge fermentation is recommended to restrict excessive Bacteroidetes proliferation, decompose lipids to saturated fatty acids, and convert proteins to aliphatic/cyclic amino acids to increase the efficiency of converting sludge to fuel.


2020 ◽  
pp. 152-158
Author(s):  
Gour Gopal Satpati ◽  
Ruma Pal

The increase of total lipid and fatty acids production was studied under different nutrient stress conditions using the macroalga, Chaetomorpha aerea. The effects of nitrogen, phosphorus, ethylene diamine tetra-acetate and sodium chloride on the growth and lipid accumulation were systematically investigated in laboratory conditions. The biomass was harvested at different stages of cultivation and assessed. The maximum changes of growth and lipid accumulation were observed in the exponential phase at different cultural conditions. The two-fold increase of total lipid was found in the order of 28.27±0.04 % (at 0.1 g/L nitrogen) > 27.30±0.37 % (at 0.5 g/L of phosphorus) > 25.86±0.77 % (at 0.05 g/L of EDTA)> 24.37±0.04 % (at 0.05 g/L NaCl) on 8th day of cultivation. The fatty acids were identified and quantified by gas chromatography mass spectrometry (GC-MS). The alga produces significantly high amount of monounsaturated fatty acid (MUFA) and saturated fatty acids (SFA) than the polyunsaturated fatty acids (PUFA) in different cultural conditions. The elevated levels of C16:1, C18:1 and C20:1 was identified under nitrate, phosphate and salt stress conditions, which are more suitable for biodiesel production.


Sign in / Sign up

Export Citation Format

Share Document