scholarly journals Direct Microbial Reduction and Subsequent Preservation of Uranium in Natural Near-Surface Sediment

2005 ◽  
Vol 71 (4) ◽  
pp. 1790-1797 ◽  
Author(s):  
Yohey Suzuki ◽  
Shelly D. Kelly ◽  
Kenneth M. Kemner ◽  
Jillian F. Banfield

ABSTRACT The fate of uranium in natural systems is of great environmental importance. X-ray absorption near-edge spectroscopy (XANES) revealed that U(VI) was reduced to U(IV) in shallow freshwater sediment at an open pit in an inactive uranium mine. Geochemical characterization of the sediment showed that nitrate, Fe(III), and sulfate had also been reduced in the sediment. Observations of the sediment particles and microbial cells by scanning and transmission electron microscopy, coupled with elemental analysis by energy dispersive spectroscopy, revealed that uranium was concentrated at microbial cell surfaces. U(IV) was not associated with framboidal pyrite or nanometer-scale iron sulfides, which are presumed to be of microbial origin. Uranium concentrations were not detected in association with algal cells. Phylogenetic analyses of microbial populations in the sediment by the use of 16S rRNA and dissimilatory sulfite reductase gene sequences detected organisms belonging to the families Geobacteraceae and Desulfovibrionaceae. Cultivated members of these lineages reduce U(VI) and precipitate iron sulfides. The association of uranium with cells, but not with sulfide surfaces, suggests that U(VI) is reduced by the enzymatic activities of microorganisms. Uranium was highly enriched (760 ppm) in a subsurface black layer in unsaturated sediment sampled from a pit which was exposed to seasonal fluctuations in the pond level. XANES analysis showed that the majority of uranium in this layer was U(IV), indicating that uranium is preserved in its reduced form after burial.

Author(s):  
Julia T. Luck ◽  
C. W. Boggs ◽  
S. J. Pennycook

The use of cross-sectional Transmission Electron Microscopy (TEM) has become invaluable for the characterization of the near-surface regions of semiconductors following ion-implantation and/or transient thermal processing. A fast and reliable technique is required which produces a large thin region while preserving the original sample surface. New analytical techniques, particularly the direct imaging of dopant distributions, also require good thickness uniformity. Two methods of ion milling are commonly used, and are compared below. The older method involves milling with a single gun from each side in turn, whereas a newer method uses two guns to mill from both sides simultaneously.


1984 ◽  
Vol 33 ◽  
Author(s):  
D. J. Sharp ◽  
J. K. G. Panitz ◽  
C. H. Seager

ABSTRACTA combination of chemical etching and sheet resistivity measurements showed that intense (1.4 mA/cm2 ) low energy (1400 eV) ion beam hydrogenation of polycrystalline silicon having a columnar structure can produce electrical defect passivation to depths in the order of 100 μm. Transmission electron micrographs disclose surface and near-surface features resulting from the ion beam bombardment which suggest that one of the hydrogen transport mechanisms may be defect induced.


2007 ◽  
Vol 7 (12) ◽  
pp. 4378-4390 ◽  
Author(s):  
Anuradha Somayaji ◽  
Ramoun Mourhatch ◽  
Pranesh B. Aswath

Tribofilms with thickness ranging from 100–200 nm were developed in-situ during wear tests using a zinc dialkyl dithiophosphates (ZDDP) and fluorinated ZDDP (F-ZDDP). The influence of the antioxidant alkylated diphenyl amine on the formation and properties of these tribofilm is examined. Results indicate that the thickness of the tribofilms formed when F-ZDDP is used is always thicker than the tribofilm formed with ZDDP. In addition, in the presence of antioxidants the tribofilm thickness is increased. The hardness of these tribofilms in the absence of the antioxidants is significantly higher at the near surface region (0–30 nm) when compared to the films formed in the presence of antioxidant. Nanoscratch tests conducted to examine the abrasion resistance of the tribofilms also indicate that the tribofilms formed by F-ZDDP are more resistant to scratch compared to films formed by ZDDP. In the presence of antioxidant, tribofilms formed by F-ZDDP are significantly thicker while both films behave in a similar fashion in nanoscratch tests. Transmission electron microscopy of the wear debris formed during the tests were examined and results indicate the nucleation and growth of nanoparticles of Fe3O4 with an approximate size of 5–10 nm embedded within an otherwise amorphous tribofilm.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 918
Author(s):  
Natalia Karakchieva ◽  
Olga Lepakova ◽  
Yuri Abzaev ◽  
Victor Sachkov ◽  
Irina Kurzina

In this study the influence of scandium on the structural and phase state of the Ti-Al alloy obtained by the method of “Hydride Technology” (HT). The Rietveld method has allowed for determining the content of basic phases of the 49at.%Ti-49at.%Al-2at.%Sc system. By means of the methods of transmission electron microscopy (TEM) and X-ray spectral microanalysis, it has been established that scandium additives into the Ti-Al system result in the change of the quantitative content of phases in local regions of the structure. The Ti2Al5 phase has been found, and Ti2Al has been absent. In the morphology of substructures Ti-Al and Ti-Al-Sc there are lamellar structures or lamellae; the peculiarities of the distribution, fraction and size of which are influenced by scandium additives. The average width of Al-rich lamellae has been 0.85 µm, which is four times greater than that for the Ti-Al system (0.21 µm). For Ti-rich lamellae of the sample of the Ti-Al-Sc alloy, the average width of the lamellae has been 0.54 µm, and for Ti-Al it has been 0.34 µm. Based on the obtained data, a scheme of the distribution of phases in the composition of the Ti-Al-Sc alloy in the lamellar structures has been proposed. It has been established that in the Ti-Al-Sc system there is growth of the near-surface strength relative to Ti-Al. In this way, the microhardness of the Ti-Al-Sc alloy has amounted to 1.7 GPa, that is of the Ti-Al alloy which is 1.2 GPa.


1994 ◽  
Vol 357 ◽  
Author(s):  
A. J. Pedraza ◽  
Siqi Cao ◽  
L. F. Allard ◽  
D. H. Lowndes

AbstractA near-surface thin layer is melted when single crystal alumina (sapphire) is pulsed laserirradiated in an Ar-4%H2 atmosphere. γ-alumina grows epitaxially from the (0001) face of axalumina (sapphire) during the rapid solidification of this layer that occurs once the laser pulse is over. Cross sectional high resolution transmission electron microscopy (HRTEM) reveals that the interface between unmelted sapphire and γ-alumina is atomistically flat with steps of one to a few close-packed oxygen layers; however, pronounced lattice distortions exist in the resolidified γ-alumina. HRTEM also is used to study the metal-ceramic interface of a copper film deposited on a laser-irradiated alumina substrate. The observed changes of the interfacial structure relative to that of unexposed substrates are correlated with the strong enhancement of film-substrate bonding promoted by laser irradiation. HRTEM shows that a thin amorphous film is produced after irradiation of 99.6% polycrystalline alumina. Formation of a diffuse interface and atomic rearrangements that can take place in metastable phases contribute to enhance the bonding strength of copper to laser-irradiated alumina.


2020 ◽  
Author(s):  
Feng Yang ◽  
Haofei Zhao ◽  
Wu Wang ◽  
Qidong Liu ◽  
Xu Liu ◽  
...  

Abstract When carbon-containing species are involved in reactions catalyzed by transition metals at high temperature, the diffusion of carbon on/in catalysts dramatically influence the catalytic performance. Acquiring information on the carbon-diffusion-involved evolution of catalysts at atomic level is crucial for understanding the reaction mechanism yet also challenging. For the chemical vapor deposition process of single-walled carbon nanotubes (SWCNTs), we developed methodologies to record in-situ the near-surface structural and chemical evolution of Co catalysts with carbon permeation using an aberration-corrected environmental transmission electron microscope and the synchrotron X-ray absorption spectroscopy. The nucleation and growth of SWCNTs were linked with the partial carbonization of catalysts and the alternating dissolvement-precipitation of carbon in catalysts. The dynamics of carbon atoms in catalysts brings deeper insight into the growth mechanism of SWCNTs and also sheds light on inferring mechanisms of more reactions. The methodologies developed here will find broad applications in studying catalytic and other processes.


1994 ◽  
Vol 339 ◽  
Author(s):  
V. Heera ◽  
R. Kögler ◽  
W. Skorupa ◽  
J. Stoemenos

ABSTRACTThe evolution of the damage in the near surface region of single crystalline 6H-SiC generated by 200 keV Ge+ ion implantation at room temperature (RT) was investigated by Rutherford backscattering spectroscopy/chanelling (RBS/C). The threshold dose for amorphization was found to be about 3 · 1014 cm-2, Amorphous surface layers produced with Ge+ ion doses above the threshold were partly annealed by 300 keV Si+ ion beam induced epitaxial crystallization (IBIEC) at a relatively low temperature of 480°C For comparison, temperatures of at least 1450°C are necessary to recrystallize amorphous SiC layers without assisting ion irradiation. The structure and quality of both the amorphous and recrystallized layers were characterized by cross-section transmission electron microscopy (XTEM). Density changes of SiC due to amorphization were measured by step height measurements.


2008 ◽  
Vol 389-390 ◽  
pp. 469-474 ◽  
Author(s):  
Ji Wang Yan ◽  
Tooru Asami ◽  
Tsunemoto Kuriyagawa

Ultraprecision diamond-cut silicon wafers were irradiated by a nanosecond pulsed Nd:YAG laser, and the resulting specimens were characterized using transmission electron microscopy and micro-Raman spectroscopy. The results indicate that at specific laser energy density levels, machining-induced amorphous layers and dislocated layers were both reconstructed to a complete single-crystal structure identical to the bulk region. Similar effects were confirmed for diamond-ground silicon wafers. Effects of overlapping irradiation were investigated and perfect crystallographic uniformity was achieved in the boundary region. The recovery process involved rapid melting of the near-surface amorphous layer, followed by epitaxial regrowth from the damage-free crystalline bulk.


2021 ◽  
Vol 1027 ◽  
pp. 155-162
Author(s):  
Qiang Wang

In order to study the mechanism of the fatigue strengthening using laser shot peening in GH4169 alloy, micro-structural and nanoscale mechanical twins (MT) at different depth below the top surface subjected to laser shot peening processing (LSP) were investigated by means of electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) observations. In terms of the experimental observations and analyses, the formation of refined grains and nanoscale MT mechanism at the near surface of GH4169 alloy as a function of LSP treament can be summarized as follows: (i) two direction low density of MTs divide the initial coarse grains into submicron rhombic blocks; (ii) high density of MTs aligned in two directions subdivide the submicron rhombic blocks into nanoscale rhombic MT blocks; (iii) the third direction MT further refine the nanoscale rhombic MT blocks into nanoscale triangular MT blocks; (iv) some of subdivided blocks evolve into refined grains. An ultra-high strain rate induced by ultra-short laser pulse plays a key role in the formation of refined grains and nanoscale MT during plastic deformation of GH4169 alloy subjected to LSP treatment.


Sign in / Sign up

Export Citation Format

Share Document