scholarly journals Intranasal Immunization against Dental Caries with a Streptococcus mutans-Enriched Fimbrial Preparation

1999 ◽  
Vol 6 (3) ◽  
pp. 405-409 ◽  
Author(s):  
Margherita Fontana ◽  
Ann J. Dunipace ◽  
George K. Stookey ◽  
Richard L. Gregory

ABSTRACT Streptococcus mutans has been identified as the major etiological agent of human dental caries. The first step in the initiation of infection by this pathogenic bacterium is its attachment (i.e., through bacterial surface proteins such as glucosyltransferases, P1, glucan-binding proteins, and fimbriae) to a suitable receptor. It is hypothesized that a mucosal vaccine against a combination ofS. mutans surface proteins would protect against dental caries by inducing specific salivary immunoglobulin A (IgA) antibodies which may reduce bacterial pathogenesis and adhesion to the tooth surface by affecting several adhesins simultaneously. Conventional Sprague-Dawley rats, infected withS. mutans at 18 to 20 days of age, were intranasally immunized with a mixture of S. mutans surface proteins, enriched for fimbriae and conjugated with cholera toxin B subunit (CTB) plus free cholera toxin (CT) at 13, 15, 22, 29, and 36 days of age (group A). Control rats were either not immunized (group B) or immunized with adjuvant alone (CTB and CT [group C]). At the termination of the study (when rats were 46 days of age), immunized animals (group A) had significantly (P < 0.05) higher salivary IgA and serum IgG antibody responses to the mixture of surface proteins and to whole bacterial cells than did the other two groups (B and C). No significant differences were found in the average numbers of recoveredS. mutans cells among groups. However, statistically fewer smooth-surface enamel lesions (buccal and lingual) were detected in the immunized group than in the two other groups. Therefore, a mixture of S. mutans surface proteins, enriched with fimbria components, appears to be a promising immunogen candidate for a mucosal vaccine against dental caries.

Author(s):  
M. Chittrarasu ◽  
A. Shafie Ahamed ◽  
A. Andamuthu Sivakumar

Background: Dental caries is one of the most common chronic diseases, and it is caused by the acid fermentation of bacteria that have become attached to the teeth. Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus) anchor surface proteins to the cell wall and form a biofilm to aid adhesion to the tooth surface. Some natural plant products, particularly several flavonoids, are effective inhibitors. However, given the scarcity of inhibitors and the emergence of drug resistance, the development of new inhibitors is critical. The high-throughput virtual screening approach was used in this study to identify new potential inhibitor of against S. mutans and L. acidophilus by using ligand (Ellagic acid). Aim: To evaluate the drug interaction ligand (Ellagic acid) and protein [A3VP1 of AgI/II] of Streptococcus mutans (PDB ID: 3IPK), glucan-1,6 - alpha-glucosidase from Lactobacillus acidophilus NCFM (PDB ID: 4AIE). Materials and Methodology: The pdb format of two selected proteins was retrieved from the RCSB protein database. Then inhibitors were docked with protein (A3VP1 of AgI/II) and glucan-1,6-alpha-glucosidase to identify the potent inhibitor. An evaluation criterion was based on the binding affinities by using AutoDock. Results: The binding energy of Ellagic acid - Streptococcus mutans docked complex-10.63 kcal/mol and with Ellagic acid – Lactobacillus acidophilus docked complex was -7.30 kcal/mol. Conclusion: In this study, Showed that lesser binding energy better is the binding of the ligand and protein. These findings can provide a new strategy for dental caries disease therapy by using Ellagic acid as a inhibitor against  Streptococcus mutans and Lactobacillus acidophilus


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Lin Zeng ◽  
Robert A. Burne

ABSTRACTThe dental caries pathogenStreptococcus mutanscan ferment a variety of sugars to produce organic acids. Exposure ofS. mutansto certain nonmetabolizable carbohydrates, such as xylitol, impairs growth and can cause cell death. Recently, the presence of a sugar-phosphate stress inS. mutanswas demonstrated using a mutant lacking 1-phosphofructokinase (FruK) that accumulates fructose-1-phosphate (F-1-P). Here, we studied an operon inS. mutans,sppRA, which was highly expressed in thefruKmutant. Biochemical characterization of a recombinant SppA protein indicated that it possessed hexose-phosphate phosphohydrolase activity, with preferences for F-1-P and, to a lesser degree, fructose-6-phosphate (F-6-P). SppA activity was stimulated by Mg2+and Mn2+but inhibited by NaF. SppR, a DeoR family regulator, repressed the expression of thesppRAoperon to minimum levels in the absence of the fructose-derived metabolite F-1-P and likely also F-6-P. The accumulation of F-1-P, as a result of growth on fructose, not only inducedsppAexpression, but it significantly altered biofilm maturation through increased cell lysis and enhanced extracellular DNA release. Constitutive expression ofsppA, via a plasmid or by deletingsppR, greatly alleviated fructose-induced stress in afruKmutant, enhanced resistance to xylitol, and reversed the effects of fructose on biofilm formation. Finally, by identifying three additional putative phosphatases that are capable of promoting sugar-phosphate tolerance, we show thatS. mutansis capable of mounting a sugar-phosphate stress response by modulating the levels of certain glycolytic intermediates, functions that are interconnected with the ability of the organism to manifest key virulence behaviors.IMPORTANCEStreptococcus mutansis a major etiologic agent for dental caries, primarily due to its ability to form biofilms on the tooth surface and to convert carbohydrates into organic acids. We have discovered a two-gene operon inS. mutansthat regulates fructose metabolism by controlling the levels of fructose-1-phosphate, a potential signaling compound that affects bacterial behaviors. With fructose becoming increasingly common and abundant in the human diet, we reveal the ways that fructose may alter bacterial development, stress tolerance, and microbial ecology in the oral cavity to promote oral diseases.


2020 ◽  
Vol 10 (2) ◽  
pp. 48
Author(s):  
Sri Kunarti ◽  
Aulia Ramadhani ◽  
Laskmiari Setyowati

Background: Dental caries is one of the most common infectious diseases and often occurs in the community caused by bacteria. Attached bacteria in the tooth surface for a long time will form a biofilm and will lead to demineralization characterized by damage in the structure of the tooth enamel. The bacteria that cause dental caries and can form biofilms is Streptococcus mutans. The bacteria inside biofilms are more resistant to antibacterial agents. Flavonoids in mangosteen pericarp extract can be a cleaner alternative for the anti-biofilm cavity that has properties against Streptococcus mutans. Purpose: To determine the activity of flavonoids in mangosteen pericarp extract at a certain concentration against Streptococcus mutans bacteria. Methods: This study was a laboratory experimental study with a post-test only control group design. Streptococcus mutans were diluted according to the Mc Farland dilution standard 106 in Tryptic Soy Broth (TSB) medium and put in a flexible U-bottom microtiter plate. Then it was incubated for 5x24 hours and checked using crystal violet simple staining to see the formation of biofilms. Flavonoid extract of mangosteen pericarp performed serial dilution in a concentration of 100%, 50%, 25%, 12.5%, 6.25%, 3.125%, 1.56%, and 0.78% was added, and the incubation process were conducted for 1x24 hours. OD (Optical Density) readings were done with a wavelength of 595 nm. Results: There was a significant difference between the test groups and the positive control group. The concentration of 100% had the anti-biofilm activity and showed the value of the highest percentage of inhibition, whilst the concentration of 0.78% showed a minimum biofilm inhibition concentration. The results were demonstrated by a statistical analysis test. Conclusion: Flavonoid extract of mangosteen pericarp at a certain concentration has anti-biofilm activity against Streptococcus mutans biofilm.


2001 ◽  
Vol 69 (12) ◽  
pp. 7285-7292 ◽  
Author(s):  
Naotoshi Tsuji ◽  
Kayo Suzuki ◽  
Harue Kasuga-Aoki ◽  
Yasunobu Matsumoto ◽  
Takeshi Arakawa ◽  
...  

ABSTRACT Animals can be rendered immune to Ascaris parasites by immunization with infectious-stage larvae. The specific parasite gene products that mediate protective responses in ascariasis are unknown. We have identified a cDNA encoding Ascaris suum 14-kDa antigen (As14) and evaluated the vaccinal effect of theEscherichia coli-expressed recombinant protein (rAs14). GenBank analysis showed that As14 has low similarity at the amino acid level to a Caenorhabditis elegans gene product and to antigens of the filarial nematodes but not to other known proteins. In addition, As14 homologues were found to be expressed in human and dog roundworms. In mice that received intranasal administration of rAs14 coupled with cholera toxin B subunit (rAs14-CTB), there was a 64% reduction of recovery of larvae compared with that in the nontreated group. The vaccinated mice showed a significant increase in the total serum immunoglobulin G (IgG) levels and the mucosal IgA responses. Elevation of the rAs14-specific IgE response was also seen. Measurement of the IgG subclasses showed a higher level of IgG1 and a lower level of IgG2a antibody response in the sera of the immunized mice, suggesting that protection was associated with a type II immune response. As14 is the first protective antigen against A. suum infection to be identified. Our immunization trial results in laboratory animals suggest the possibility of developing a mucosal vaccine for parasitic diseases caused by ascarid nematodes.


2019 ◽  
Vol 14 (5) ◽  
pp. 1934578X1984933
Author(s):  
Joshua L. Mieher ◽  
Norbert Schormann ◽  
Manisha Patel ◽  
Hui Wu ◽  
Champion Deivanayagam

Dental caries characterized by acid damage of tooth enamel is a persistent disease that begins with the formation of biofilms on the tooth surface. The secreted glucosyltransferases enable Streptococcus mutans to synthesize extracellular glucan polymers using ingested starch within the oral cavity, which eventually results in the production of acid, a contributing factor to cariogenesis. In this paper, we report the cloning, expression, purification, crystallization, and preliminary X-ray diffraction characterization of glucosyltransferase B.


e-GIGI ◽  
2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Helen N. Sekeon ◽  
Heriyannis Homenta ◽  
Michael A. Leman

Abstract: Streptococcus mutans is the most common bacterium that causes dental caries due to its ability to ferment carbohydrates into acid resulting in the decreased pH on the tooth surface. Prevention of dental caries could be achieved by inhibiting the growth of cariogenic bacteria. Various efforts to control and prevent the cariogenic bacteria include the usage of herbal ingredients; one of them is gedi leaves (Abelmoschus manihot L.). These gedi leaves contain bioactive compounds such as flavonoids, alkaloids, steroids, and saponins. This study was aimed to prove that gedi leaf extract had inhibitory effect on the growth of S.mutans and to obtain the minimum inhibitory concentration (MIC) of this extract on the growth of S. mutans. This was a true experimental design with a randomized pretest-posttest control group design. Gedi leaf extract was obtained by maceration method in 96% ethanol. The results showed that gedi leaf extract had an antibacterial effect on the growth of S. mutans. We used turbidimetry, UV-Vis spectrophotometer, and two times of treatment to obtain the MIC of gedi leaf extract on Streptococcus mutans which was 6.25%. Conclusion: Gedi leaf extract could inhibit the growth of S. mutans with a MIC of 6.25%.Keywords: dental caries, gedi leaf extract (Abelmoschus manihot L.), Streptococcus mutans Abstrak: Streptococcus mutans merupakan bakteri yang paling banyak menyebabkan karies gigi karena bakteri ini berkemampuan memfermentasi karbohidrat menjadi asam yang berakibat turunnya pH pada permukaan gigi. Pencegahan karies gigi dapat dicapai dengan menghambat pertumbuhan bakteri kariogenik. Berbagai upaya dilakukan untuk mengen-dalikan dan mencegah bakteri kariogenik, antara lain dengan menggunakan bahan herbal; salah satunya yaitu tanaman gedi (Abelmoschus manihot L.). Daun gedi mengandung senyawa bioaktif antara lain flavonoid, alkaloid, steroid, dan saponin. Penelitian ini bertujuan untuk membuktikan efek inhibisi ekstrak daun gedi terhadap pertumbuhan S. mutans dan mendapatkan konsentrasi hambat minimum (KHM) ekstrak daun gedi terhadap pertumbuhan bakteri S. mutans. Jenis penelitian ini ialah eksperimental murni dengan randomized pretest-posttest control group design. Ekstrak daun gedi dibuat dengan metode maserasi dengan menggunakan etanol 96%. Hasil penelitian menunjukkan bahwa ekstrak daun gedi (Abelmoschus manihot L.) memiliki efek antibakteri dalam menghambat pertumbuhan bakteri Streptococcus mutans. Dengan menggunakan metode turbidimetri dan spektrofotometer UV-Vis dalam 2 (dua) kali perlakuan maka diperoleh KHM ekstrak daun gedi (Abelmoschus manihot L.) terhadap bakteri Streptococcus mutans terdapat pada konsentrasi 6,25%. Simpulan: Ekstrak daun gedi dapat meghambat pertumbuhan Streptococcus mutans dengan KHM pada konsentrasi 6,25%.Kata kunci: karies gigi, ekstrak daun gedi (Abelmoschus manihot L.), Streptococcus mutans


2003 ◽  
Vol 71 (5) ◽  
pp. 2933-2937 ◽  
Author(s):  
Franck Biet ◽  
Laurent Kremer ◽  
Isabelle Wolowczuk ◽  
Myriam Delacre ◽  
Camille Locht

ABSTRACT The pentameric form of the cholera toxin B subunit (CTB) is known to be a strong mucosal adjuvant and stimulates antigen-specific secretory immunoglobulin A (IgA) and systemic antibody responses to antigens when given by mucosal routes. To deliver CTB for prolonged periods of time to the respiratory mucosa, we constructed a Mycobacterium bovis bacillus Calmette-Guérin (BCG) strain that produces and secretes assembled pentameric CTB. Mice immunized intranasally (i.n.) with recombinant BCG (rBCG) developed a stronger anti-BCG IgA response in bronchoalveolar lavage fluids (BALF) than mice immunized with nonrecombinant BCG. The total IgA response in the BALF of mice immunized with rBCG was also stronger than that in BALF of mice immunized with the nonrecombinant strain. The induction of IgA was well correlated with an increased production of transforming growth factor β1. Simultaneous administration of intraperitoneally delivered ovalbumin and of i.n. delivered CTB-producing BCG induced a long-lasting ovalbumin-specific mucosal IgA response as well as a systemic IgG response, both of which were significantly higher than those in mice immunized with nonrecombinant BCG together with ovalbumin. These results suggest that the CTB-producing BCG may be a powerful adjuvant to be considered for future mucosal vaccine development.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 465 ◽  
Author(s):  
Junxian Wang ◽  
Yan Shi ◽  
Shisong Jing ◽  
Haisi Dong ◽  
Dacheng Wang ◽  
...  

Streptococcus mutans (S. mutans) is the primary etiological agent of dental caries. The S. mutans enzyme sortase A (SrtA) is responsible for anchoring bacterial cell wall surface proteins involved in host cell attachment and biofilm formation. Thus, SrtA is an attractive target for inhibiting dental caries caused by S. mutans-associated acid fermentation. In this study, we observed that astilbin, a flavanone compound extracted from Rhizoma Smilacis Glabrae, has potent inhibitory activity against the S. mutans SrtA, with an IC50 of 7.5 μg/mL. In addition, astilbin was proven to reduce the formation of biofilm while without affecting the growth of S. mutans. The results of a molecular dynamics simulation and a mutation analysis revealed that the Arg213, Leu111, and Leu116 of SrtA are important for the interaction between SrtA and astilbin. The results of this study demonstrate the potential of using astilbin as a nonbactericidal agent to modulate pathogenicity of S. mutans by inhibiting the activity of SrtA.


2007 ◽  
Vol 51 (4) ◽  
pp. 1351-1358 ◽  
Author(s):  
Jian He ◽  
Randal Eckert ◽  
Thanh Pharm ◽  
Maurice D. Simanian ◽  
Chuhong Hu ◽  
...  

ABSTRACT Streptococcus mutans, a common oral pathogen and the causative agent of dental caries, has persisted and even thrived on the tooth surface despite constant removal and eradication efforts. In this study, we generated a number of synthetic antimicrobial peptides against this bacterium via construction and screening of several structurally diverse peptide libraries where the hydrophobicity and charge within each library was varied incrementally in order to generate a collection of peptides with different biochemical characteristics. From these libraries, we identified multiple peptides with robust killing activity against S. mutans. To further improve their effectiveness, the most bactericidal peptides from each library were synthesized together as one molecule, in various combinations, with and without a flexible peptide linker between each antimicrobial region. Many of these “fusion” peptides had enhanced killing activities in comparison with those of the original nonconjoined molecules. The results presented here illustrate that small libraries of biochemically constrained peptides can be used to generate antimicrobial peptides against S. mutans, several of which may be likely candidates for the development of anticaries agents.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Byoung-Shik Shim ◽  
In Su Cheon ◽  
Eugene Lee ◽  
Sung-Moo Park ◽  
Youngjoo Choi ◽  
...  

Potential use of cholera toxin (CT) as a mucosal vaccine adjuvant has been documented in a variety of animal models. However, native CT is highly toxic to be used as a mucosal adjuvant in humans. Here, we demonstrate a new approach to generate a mucosal adjuvant by replacing the B subunit of CT with HIV-1 Tat protein transduction domain (PTD), which efficiently delivers fusion proteins into the cell cytoplasm by unspecific binding to cell surface. We compared the adjuvanticity and toxicity of Tat PTD-CTA1-Tat PTD (TCTA1T) with those of CT. Our results indicate that intranasal (i.n.) delivery of ovalbumin (OVA) with TCTA1T significantly augments the OVA-specific systemic and mucosal antibody responses to levels comparable to those seen with CT adjuvant. Moreover,in vivocytotoxic T lymphocyte activity elicited by TCTA1T was significantly higher than that elicited by a mutant TCTA1T (TmCTA1T) lacking ADP-ribosyltransferase function. In addition, coadministration of influenza M2 protein with TCTA1T conferred near complete protection against lethal influenza virus challenge. Importantly, TCTA1T, in contrast to CT, did not induce serum IgG antibody responses to itself and was shown to be nontoxic. These results suggest that TCTA1T may be a safe and effective adjuvant when given by mucosal routes.


Sign in / Sign up

Export Citation Format

Share Document