scholarly journals Quantitative Fluorescence Measures for Determination of Intracellular Perforin Content

2002 ◽  
Vol 9 (6) ◽  
pp. 1248-1252 ◽  
Author(s):  
Kevin J. Maher ◽  
Nancy G. Klimas ◽  
Barry Hurwitz ◽  
Richard Schiff ◽  
Mary Ann Fletcher

ABSTRACT We present methodologic details and operating characteristics of a procedure with whole blood for the quantitative assessment of intracellular perforin within distinct lymphocyte subsets. Using this method, we analyzed 20 healthy controls and 2 individuals with an inherited deficiency of perforin. The mean ± standard deviation perforin contents of natural killer (NK) cells and cytotoxic T cells of healthy controls were 3,561 ± 1,157 and 500 ± 779 relative number of molecules (rMol) of antiperforin antibody bound per cell, respectively. The NK cell perforin contents of individuals with heterozygous and homozygous perforin deficiency (familial hemophagocytic lymphohistiocytosis) were 2,260 and 212 rMol of antiperforin antibodies per NK cell. While the homozygous deficiency was found to be associated with negligible antiperforin binding, the heterozygous condition was associated with a level of perforin binding that was below the 15th percentile for healthy individuals. Because 83% of this subject's NK cells were shown to bind to antiperforin antibodies by conventional flow cytometry (relative to the normal range of 81% ± 25%), quantitative cytometry may be more sensitive than conventional cytometric methods in identifying cytolytic defects.

Author(s):  
Sri Sulistyawati ◽  
Didon M Trimulya ◽  
Supriyadi H Respati ◽  
Soetrisno Soetrisno

Objective: To determine the role of HLA-C and NK cell expressions in fetal growth restriction (FGR). Methods: A cross sectional study design was used. This study was conducted at the Obstetrics and Gynecology Department of Dr. Moewardi General Hospital, Surakarta, its affiliated hospitals, and at the Pathological Anatomy Laboratory of the Faculty of Medicine, University of Sebelas Maret Surakarta. A total of 40 samples were included in this study. The samples consisted of 20 normal pregnancies and 20 pregnancies with FGR. HLA-C expression in the trophoblast and NK cells in decidua of the subjects who met the inclusion and exclusion criteria were examined using immunohistochemical method and statistical analysis with T test. Results: The mean expression of HLA-C in the trophoblast in the pregnant group with FGR was 9.021.30, normal pregnancy was 7.96 ± 0.97, p=0.01 (p<0.05). The mean expression of NK cells in decidua of pregnancy with FGR was 10.59 ± 2.11, normal pregnancy was 0.91 ± 8.18, with p=0.00 (p<0.05). Conclusion: The expressions of HLA-C in trophoblast and NK cells in decidua of pregnancy with FGR were higher compared with those of normal pregnancy. [Indones J Obstet Gynecol 2017; 5-3: 142-148] Keywords: fetal growth restriction, HLA-C, NK cells


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Maria Vela ◽  
Teresa del Rosal ◽  
Antonio Pérez-Martínez ◽  
Jaime Valentín ◽  
Inmaculada Casas ◽  
...  

AbstractInfection is the leading cause of non-relapse-related mortality after allogeneic haematopoietic stem cell transplantation (HSCT). Altered functions of immune cells in nasal secretions may influence post HSCT susceptibility to viral respiratory infections. In this prospective study, we determined T and NK cell numbers together with NK activation status in nasopharyngeal aspirates (NPA) in HSCT recipients and healthy controls using multiparametric flow cytometry. We also determined by polymerase chain reaction (PCR) the presence of 16 respiratory viruses. Samples were collected pre-HSCT, at day 0, +10, +20 and +30 after HSCT. Peripheral blood (PB) was also analyzed to determine T and NK cell numbers. A total of 27 pediatric HSCT recipients were enrolled and 16 of them had at least one viral detection (60%). Rhinovirus was the most frequent pathogen (84% of positive NPAs). NPAs of patients contained fewer T and NK cells compared to healthy controls (p = 0.0132 and p = 0.120, respectively). Viral PCR + patients showed higher NK cell number in their NPAs. The activating receptors repertoire expressed by NK cells was also higher in NPA samples, especially NKp44 and NKp46. Our study supports NK cells relevance for the immune defense against respiratory viruses in HSCT recipients.


1989 ◽  
Vol 35 (9) ◽  
pp. 1968-1970 ◽  
Author(s):  
S Copur ◽  
S Kus ◽  
A Kars ◽  
N Renda ◽  
G Tekuzman ◽  
...  

Abstract Concentrations of total lactate dehydrogenase (LDH; EC 1.1.1.27) and LDH isoenzyme patterns were studied in serum of 19 patients with multiple myeloma and in 19 healthy controls. Patients were divided into three groups (pretreatment, nonresponders, and responders to treatment), based on their clinical status at the time of blood sampling for LDH. The LDH values were found to be significantly higher (P less than 0.05) in the pretreatment group and in the nonresponders than in the responders and the control group, the mean +/- SE values being 445 +/- 35 and 532 +/- 75 units/mL vs 349 +/- 75 and 190 +/- 7.1 units/mL, respectively. Compared with responders and healthy controls, newly diagnosed patients and nonresponders had slight diminutions in LDH-1 and LDH-2, but increased LDH-3. We conclude that determination of LDH and its isoenzymes in serum can be of value as prognostic factors in patients with multiple myeloma.


Blood ◽  
2010 ◽  
Vol 115 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Jun Yang ◽  
Xin Liu ◽  
Susan B. Nyland ◽  
Ranran Zhang ◽  
Lindsay K. Ryland ◽  
...  

Abstract Large granular lymphocyte (LGL) leukemia results from chronic expansion of cytotoxic T cells or natural killer (NK) cells. Apoptotic resistance resulting from constitutive activation of survival signaling pathways is a fundamental pathogenic mechanism. Recent network modeling analyses identified platelet-derived growth factor (PDGF) as a key master switch in controlling these survival pathways in T-cell LGL leukemia. Here we show that an autocrine PDGF regulatory loop mediates survival of leukemic LGLs of both T- and NK-cell origin. We found high levels of circulating PDGF-BB in platelet-poor plasma samples from LGL leukemia patients. Production of PDGF-BB by leukemic LGLs was demonstrated by immunocytochemical staining. Leukemic cells expressed much higher levels of PDGFR-β transcripts than purified normal CD8+ T cells or NK cells. We observed that phosphatidylinositol-3-kinase (PI3 kinase), Src family kinase (SFK), and downstream protein kinase B (PKB)/AKT pathways were constitutively activated in both T- and NK-LGL leukemia. Pharmacologic blockade of these pathways led to apoptosis of leukemic LGLs. Neutralizing antibody to PDGF-BB inhibited PKB/AKT phosphorylation induced by LGL leukemia sera. These results suggest that targeting of PDGF-BB, a pivotal regulator for the long-term survival of leukemic LGLs, may be an important therapeutic strategy.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3878-3878
Author(s):  
Ilka Bondzio ◽  
Andreas Arendt ◽  
Jurgen Schmitz ◽  
Volker Huppert

Abstract Killer cell immunoglobulin-like receptors (KIRs) are known to modulate the cytotoxic ability of human Natural Killer (NK) cells, as well as a subset of T cells. To date, only a very small number of publications have discussed the role of KIRs on T cells, e.g. CMV-specific CD4+CD28-KIR+ cytotoxic T cells (van Bergen, J., J Immunol. 2004), so we investigated whether CD56+CD3+ NKT cells might also have KIR-positive subsets. Whole human blood as well as magnetically sorted human CD56+CD3+ NKT cells were analyzed for their expression of various KIR molecules using a novel panel of fluorochrome-conjugated, anti-KIR monoclonal antibodies (CD158a/h (KIR2DL1/DS1), CD158b (KIR2DL2), CD158e (KIR3DL1), CD158i (KIR2DS4), KIR2D; Miltenyi Biotec). KIR-positive CD56+CD3+ NKT cells were identified in every donor tested. Donors possessing NK cells of a specific KIR phenotype also possessed CD56+CD3+ NKT cells with the same KIR phenotype. KIRs were also expressed in a clonal fashion on CD56+CD3+ NKT cells, similarly to NK cells. The investigated KIRs were also shown to be expressed on unseparated NK and CD56+CD3+ NKT cells from whole blood. In addition, the ratio between KIR expression on NK and CD56+CD3+ NKT cells was calculated for each donor analyzed. The results show that there is no correlation between the frequencies of KIR expression on NK cells with that of CD56+CD3+ NKT cells. For example, the expression of CD158a/h in one donor was found to be the highest of all CD56+CD3+ NKT cells analyzed, but the lowest of all NK cells by comparison to the other donors tested. For all KIR phenotypes analyzed, the frequency of KIR+ NK cells was higher than the frequency of KIR+ CD56+CD3+ NKT cells in all samples (range: 1.1 to 25.3-fold higher). Interestingly, the frequency of KIR+ NK cells versus KIR+ CD56+CD3+ NKT cells differs significantly between donors: in one donor the frequency of KIR expression is between 7.3 to 25.3-fold higher in NK cells for multiple KIR phenotypes, while this range is more narrow in other donors (2.0–5.4-fold higher). The frequencies of CD56+CD3+ NKT cell subsets staining positive for particular KIRs differ significantly between donors, e.g. for CD158b, the number of positive CD56+CD3+ NKT cells fall within a range of 4.8% to 43.3%. For CD56+CD3+ NKT cells sorted with MACS® Technology, a similarly wide-ranging distribution of CD158b (KIR2DL2) expression was found (0.85%–5.82%), though at a lower level. Further research will be required to explore these differences as they may point to different mechanisms of KIR regulation. The identification of KIR-positive CD56+CD3+ NKT cells may also provide an opportunity for their use for functional KIR studies instead of NK cell clones, as the cloning of CD56+CD3+ NKT cells may prove easier (i.e. using standard T cell cloning methods) than that of NK cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2907-2907
Author(s):  
Peter J. Lang ◽  
Matthias Pfeiffer ◽  
Heiko-Manuel Teltschik ◽  
Ingo Mueller ◽  
Tobias Feuchtinger ◽  
...  

Abstract 39 pedatric patients with acute leukemias (ALL (n=19), AML (n=14) and MDS (n=6)) received T and B cell depleted grafts from full haplotype mismatched related donors. Depletion of the G-CSF stimulated leukapheresis products was carried out with CD3/CD19 coated magnetic microbeads and the CliniMACS device and resulted in a median number of 15.9×106 CD34 (2.5–41) stem cells, 147×106 CD56 NK-cells (9–552) and 413×106 CD14 monocytes (101–1100) per kg body weight. Median numbers of residual T and B cells were 56 000 (10 000–192 000) and 26 000 (2000–149 000) respectively. A reduced intensity regimen (melphalan (140mg/m2), thiotepa (10mg/kg), fludarabine (160mg/m2), OKT3 (0.1mg/kg)) was given in most patients. Co-transfused, HLA mismatched NK cells were traced in peripheral blood of 26 patients starting on day +1 with flow cytometry and appropriate HLA antibodies. Mean numbers of donor derived CD56+ cells/μl were: 3 (day 1), 22 (d 3), 17 (d 7), 75 (d 10), 197 (d 14). Theoretically, the mean absolute number of 4.8×106 co-transfused NK cells should have resulted in a mean number of 2000 cells/μl in peripheral blood of the patients. Comparison of this expected amount with the mean number of NK cells measured within the first week postransplant (25/μl, n=17 data points) showed, that only 1.2% of the cells remained in circulating blood. Thus, the majority of donor NKs did not circulate and probably homed to other compartments (bone marrow, lymph nodes). The number of NK cells cotransfused at day 0 partially influenced the speed of NK cell recovery: patients, who received &gt; 100×106 donor NK cells/kg had significantly higher amounts of circulating cells at day 14 than patients, who received &lt;100×106 donor NKs (240 vs. 140/μl, p&lt;0.05). No significant difference was observed after d 14. Recovery of T cells was not influenced. Graft rejection occurred in 13%. This rate was similar to that of a historical control group (15% in patients who received CD34 positive selected grafts and standard conditioning regimens), although our study patients mainly received an intensity reduced regimen. We conclude, that co-transfused cells facilitated hematopoietic engraftment. Our approach resulted in low TRM (10% at d 365) and in a low relapse rate (20% at 2 years) in patients with microscopical remission (&lt;5% blasts), but was insufficient in patients with active disease (80% relapse rate). We therefore investigated options to increase NK cell activity. Cytotoxicity against K562 cells and thymidine-uptake after PHA stimulation were measured prior and post depletion in 30 procedures. Median specific lysis at E:T ratio = 20:1 was 15% prior and 23% post depletion. Thus, NK activity was not hampered by the procedure. Specific lysis was significantly enhanced by pre-incubation with 1000 U/ml Interleukin (IL) 2 (44%, median) or 2ng/ml IL 12 (40%, median) or 1ng/ml IL 15 ( 53%, median) in vitro. In contrast, thymidine-uptake was reduced from 170 000 to 3000 counts due to profound T-cell-depletion. NK activity was weak against patient derived cryopreserved leukemic blasts without stimulation, but could be significantly increased by cytokine incubation in vitro. Therefore, a pilot study with infusions of IL 15 stimulated NK cells in vivo was started. Up to now, 6 patients received a total of 8 infusions with 12×106 - 150×106 ex vivo stimulated NK cells per kg bw without any side effects. Conclusions: co-transfusion of donor NK cells in haploidentical transplantation is feasible. Only a small portion of cells remained in circulating blood and homing to other organs is likely. NK activity could be increased by cytokines; the use of ex vivo IL 15 stimulated NK cells is currently evaluated. Clinical results suggest antileukemic and graft facilitating effects of donor NK cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2574-2574
Author(s):  
Mi roslaw J Szczepanski ◽  
Malgorzata Czystowska ◽  
Marta E Szajnik ◽  
Magis Mandapathil ◽  
Benedict Hilldorfer ◽  
...  

Abstract Interleukin-15 (IL-15) has been demonstrated to play a critical role in the regulation of natural killer (NK) cells. IL-15 induces the differentiation of NK cells from hematopoietic progenitors, stimulates the expansion of peripheral NK cells, and supports their survival. We investigated the role of IL-15 as a homeostatic regulator of NK cells in 29 patients diagnosed with acute myeloid leukemia (AML) and the potential role of IL-15 in enhancing the anti-tumor activity of NK cells in AML patients. The percentage of circulating NK cells was lower (p&lt;0.0001) in the AML patients (6%± 0.7, range 1–17%) compared to the NK cells of healthy donors (12%± 1, range 9–17 %). At diagnosis the mean level of IL-15 in patient plasma was 1.9 pg/ml (range 0.03–8.9) and increased (p &lt;0.02) to 5.2 pg/ml (range 0.06–13.4) after the completion of induction chemotherapy, when the NK levels had been reduced to zero cells/microliter. The mean level of IL-15 subsequently decreased to pre-treatment levels in the AML patients who achieved complete remission (mean 1.6 pg/ml, range 0.4–2.3). To assess effects of IL-15 on the NK cytotoxicity, we sorted NK cells from PBMC obtained from AML patients prior to treatment (at diagnosis) and cultured them in the presence of IL-15. Following IL-15 stimulation, a significant increase in NK-cell cytotoxicity against K562 targets and the patients’ autologous leukemic blasts was observed (p&lt;0.05) as was up-regulation in expression of the activating natural cytotoxicity receptors, NKp30 and NKp46 and the C-type lectin receptors NKG2D and NKG2C (p&lt;0.02–0.001). Addition of blocking antibodies to the activating receptors reduced NK-cell cytotoxicity. We determined that IL-15, a homeostatic NK-cell cytokine, increases after severe depletion of NK cells following intensive chemotherapy and this leads to increased NK-cell lytic activity in AML patients. These data suggest that modulation of IL-15 levels in AML could be therapeutically beneficial as IL-15 enhances NK-cell recovery following intensive chemotherapy and increases NK-cell anti-tumor activity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 827-827 ◽  
Author(s):  
Sarah Cooley ◽  
Purvi Gada ◽  
David McKenna ◽  
Valarie McCullar ◽  
Susan Fautsch ◽  
...  

Abstract We have previously shown that adoptive transfer of haploidentical natural killer (NK) cells can induce remissions in 27% of patients with refractory or relapsed acute myeloid leukemia (AML) [Miller et al., Blood 2005, 105 (8)]. Aiming to optimize NK cell expansion, which we hypothesize is required for therapeutic efficacy, we tested additional CD56-positive selection (N=10) versus the CD3-depletion method used for our earlier NK cell infusions (N=10). Donor-derived NK cells were not measurable immediately after infusion. Successful in vivo NK cell expansion, defined as >100 donor-derived NK cells/ml at 14 days (by VNTR chimerism and flow cytometry) was not improved with CD56-selection (11% vs. 11%; mean 131±3 NK cells/ml), and was associated with poorer outcomes (10% vs. 27% AML remissions). Because the remissions induced by adoptive NK cell transfer were not durable, we added a CD34+ stem cell infusion to create a nonmyeloablative haploidentical transplantation protocol for older and less fit patients. We also added radiation to the NK cell-based preparative regimen to further improve NK cell expansion. The lymphodepleting chemoradiation plus NK cell preparative regimen included fludarabine 25 mg/m2 × 5 (day -18 through day -14), cyclophosphamide 60 mg/kg × 2 (days -16 and -15), and 200 cGy of total body irradiation (twice a day on day -13). The NK cell product, prepared by cliniMACS (Miltenyi) CD3-depletion of a single leukapheresis collection from a haploidentical related donor, was incubated overnight in 1000 U/ml IL-2 and then infused on day -12 followed by 6 doses subcutaneous IL-2 (10 million units) given every other day to promote in vivo NK cell expansion. The mean NK cell dose was 1.85 × 107 cells/kg and the mean CD3+ cell dose was 4.8 × 104 cells/kg (maximum permitted 3 × 105 CD3+ cells/kg). A CD34-selected filgrastim-mobilized peripheral blood graft from the same donor (target dose >3 × 106 CD34 cells/kg) was given with Thymoglobulin 3 mg/kg days 0, +1 and +2 as the only additional immunosuppression. In the 13 patients treated to date a significantly higher rate of NK cell expansion (75% [9/12 evaluable]; mean 607±184 NK cells/ml) was achieved compared to the adoptive NK cell transfer regimen, which did not include radiation. Plasma IL-15, which is critical for NK expansion, was highest on day -12 (the NK infusion day) after the preparative regimen (64 ± 8 pg/ml [day -12] vs. 6 ± 1 pg/ml [baseline pre-chemo]; p <.0001). This adoptive NK cell plus allograft protocol led to 66% of relapsed or refractory AML patients (8/12 evaluable) clearing leukemia by day -1, with only one late relapse (day +93). Patients who did not clear leukemia (N=4) did not engraft, and it was not evaluable in 3 patients with early (pre-day +13) treatment related mortality (TRM). All others (N=6), engrafted quickly (defined by an absolute neutrophil count >500/ml and 100% donor chimerism: median 17 days [range 11–31]). None developed graft vs. host disease (GVHD), but infections were common (3 fatal EBV/PTLD; 1 Fusarium). To prevent EBV reactivation NK products are now CD19 depleted and patients receive prophylactic Rituxan to prevent PTLD. The other deaths were due to persistent disease (N=4) or relapse (N=1). One patient is alive in remission beyond day +100. No clear associations between killer immunoglobulinlike receptor (KIR) ligand mismatch between donor and recipient were detected. In this series of patients with refractory AML, addition of haploidentical NK cells to a nonmyeloablative haploidentical transplantation yields NK cell expansion in a majority of patients, achievement of complete remission, and quick engraftment without GVHD. This is a promising platform upon which to add other strategies aimed at improving disease free survival in patients with refractory AML.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 856-856
Author(s):  
Anna Kreutzman ◽  
Vesa Juvonen ◽  
Veli Kairisto ◽  
Marja Ekblom ◽  
Leif Stenke ◽  
...  

Abstract Abstract 856 Introduction. Central to current treatment of Ph+ leukemia patients are tyrosine kinase inhibitors (TKIs), which predominantly target the BCR-ABL1 kinase in malignant cells. However, broader-spectrum 2nd generation TKIs, such as bosutinib, dasatinib and nilotinib, also inhibit off-target kinases with important physiological functions. Several in vitro studies have implied that TKIs may have immunosuppressive effects by suppressing activation and proliferation of effector lymphocytes. In contrast, we recently observed immunostimulation during dasatinib therapy in the form of marked expansion of clonal cytotoxic lymphocytes (T- and NK cells) resulting in chronic LGL-type lymphocytosis in peripheral blood (PB). The prevalence, detailed molecular background and clinical implications of clonal lymphocytes during TKI therapy are currently unknown. The aim of this study was to comprehensively analyze clonality and evolution of lymphocyte clones during TKI therapy. Patients and methods. The study population included patients with Ph+ leukemia, both CML (n=28) and ALL patients (n=4) on dasatinib (n=23) and imatinib (n=9) therapies. In addition, samples from 12 healthy controls and diagnostic samples from the nine imatinib treated patients were analyzed. Lymphocyte clonality was determined by analysis of PB mononuclear cells (MNC) for clonal T cell receptor (TCR) γ and δ gene rearrangements by 18 primer pairs covering most known clonal TCR γ and δ rearrangements. Upon positive reaction in heteroduplex analysis, the purified PCR products were sequenced. If clonal rearrangement was observed, allele-spesific PCR primers were designed to allow for quantitative follow-up of lymphocyte clones in each patient. Results. Sequencing-confirmed clonal TCR γ rearrangement was observed only in 1 of 12 healthy controls and no TCR δ gene rearrangements were found in this group. Surprisingly, 7 of 9 (78%) CML patients showed clonal TCR rearrangements at diagnosis. In 3 patients the clonal rearrangement was detected in the TCR δ genes, in 7 patients in the TCR γ genes and 3 patients had rearrangemens both in TCR δ and γ genes. After one year of imatinib treatment the same clones could be detected in 5 of the 7 patients (71%). Although clonal cells were observed, none of the imatinib patients had signs of a concomitant lymphoproliferative disorder and the distribution of lymphocyte subclasses was normal. Next, 23 patients treated with dasatinib were studied, 10 without (LGLneg) and 13 with PB LGL lymphocytosis (LGLpos) including T- or NK-cell expansions. In all LGLpos dasatinib patients (including patients with a CD3neg NK-cell expansion) clonal TCR γ or δ rearrangements were found. In LGLneg dasatinib patients the prevalence of TCR rearrangements was 80%. LGLpos patients had more often clonal rearrangements in TCR δ genes (62%) than LGLneg patients (10%). No differences in clonal rearranged TCR γ genes (77% vs. 80%) were detected. Most patients displayed more than one clonal TCR rearrangement. Quantitative follow-up of LGLpos patients revealed that the expansion of a single predominant lymphocyte clone accounted for LGL lymphocytosis. Intriguingly, quantitative follow-up of lymphocyte clones by PCR showed that the observed clones existed at low levels already before start of dasatinib therapy during imatinib treatment, but no lymphocyte expansions were then seen. Sorting of lymphocytes showed that clonal cells resided in the CD8+ and CD4+ T-cell populations and, strikingly, also among CD16/56+CD3neg NK cells. All dasatinib patients with NK cell expansions (n=3) showed TCR δ rearrangements in their NK cells. Conclusions. Clonal lymphocytes could rarely be found in healthy controls. In contrast, they were frequently present in CML patients at diagnosis and persisted during TKI therapy. In a distinct subgroup of dasatinib treated patients, clonal cells massively expanded during successful therapy. Clonal TCR rearrangements were detected in CD4+, CD8+ and, unexpectedly, also in NK cells. The epitopes and function of clonal, CML-associated lymphocytes are under investigation. Previous studies showed that clonal expansions during dasatinib were associated with excellent, long-lasting therapy responses in advanced leukemia. We therefore hypothesize, that the clonal lymphocytes present at CML diagnosis may be anergic anti-leukemic cells and part of the immune escape mechanisms inherent to leukemogenesis and that dasatinib therapy can reverse this anergy. Disclosures: Ekblom: BMS: Honoraria. Seggewiss:BMS: Honoraria. Porkka:BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding. Mustjoki:BMS: Honoraria.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1397-1397 ◽  
Author(s):  
Rayne H. Rouce ◽  
Takuya Sekine ◽  
Gerrit Weber ◽  
Claude Chew ◽  
Katayoun Rezvani ◽  
...  

Abstract Background Natural killer (NK) cells are a key component of innate immunity, with the potential to recognize and kill transformed malignant cells without prior sensitization. A balance between activating and inhibitory signals from cell surface receptors determines NK cell cytotoxicity and cytokine release. Therapeutic approaches to augmenting NK cell function are being explored in various malignancies. Little is known about NK phenotype and function in patients with childhood acute lymphoblastic leukemia (ALL), the most common childhood cancer. Here we describe an inhibitory phenotype and impaired cytolytic function in NK cells from pediatric ALL patients at diagnosis, compared with healthy pediatric controls. Restoring NK function may be a useful therapeutic approach in ALL. Methods Peripheral blood mononuclear cells (PBMCs) were isolated from 25 patients with newly diagnosed B-ALL, age 1-16 years, and 7 healthy controls, age 2-13 years, in order to compare NK cell frequency, immunophenotype, and functional activity. NK frequency was assessed by flow cytometric staining for CD56+CD3- cells. NK phenotype was assessed by surface expression of activating receptors NKp30, NKp44, NKp46 and NKG2D and inhibitory receptors KIR2DL1/S1, KIR2DL2/S2, KIR3DL1 and NKG2A. Functional activity was determined by incubation of NKs with target cells, followed by flow cytometric measurement of degranulation (surface CD107a) and cytokine release (intracellular IFNg and TNFa). Targets included the MHC class I deficient K562 cell line and, where available, autologous ALL blasts. Results ALL patients demonstrated significantly lower absolute NK cell counts compared with healthy controls (mean absolute count 168 vs. 406 cells/uL, p = 0.0002). They also exhibited significantly fewer NK cells expressing the activating marker NKp46 (mean absolute count 70 vs. 165, p = 0.016); and a significantly higher percentage of cells expressing the inhibitory marker NKG2A (mean 20.5% vs. 1.95% in controls, p = 0.012) (Fig 1A). In co-culture assays with K562 target cells, ALL patients' NK cells demonstrated inferior degranulation and cytokine release compared to healthy controls (representative data in Fig 1B; mean IFNγ production of 1.2% vs. 4.8%, p = 0.02; mean TNFα production of 1.8% vs. 3.8%, p = 0.06; and mean surface CD107a of 5.4% vs. 15.1%, p = 0.08). ALL samples (n = 3) demonstrated little to no cytokine release when incubated with autologous blasts compared with the response elicited by PMA-ionomycin (representative data in Fig 1C; mean CD107a 0.92% vs. 7.85%, p = 0.04; mean IFNγ 0.26% vs 40.47%, p = 0.10; mean TNFα 0.2% vs 41%, p = 0.008). Conclusion At diagnosis, pediatric ALL patients exhibit a lower frequency of NK cells, an inhibitory phenotype, and decreased cytolytic activity compared to healthy pediatric controls, particularly against autologous leukemic blasts. These results suggest that augmentation of the NK response may be useful therapeutically to improve outcomes in childhood ALL. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document